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A B S T R A C T

Sentiment analysis is an emerging technology that aims to explore people’s attitudes toward an entity. It can be
applied in a variety of different fields and scenarios, such as product review analysis, public opinion analysis,
psychological disease analysis, and risk assessment analysis. Traditional sentiment analysis only includes the
text modality and extracts sentiment information by inferring the semantic relationship within sentences.
However, some special expressions, such as irony and exaggeration, are difficult to detect via text alone.
Multimodal sentiment analysis contains rich visual and acoustic information in addition to text, and uses
fusion analysis to more accurately infer the implied sentiment polarity (positive, neutral, negative). The main
challenge in multimodal sentiment analysis is the integration of cross-modal sentiment information, so we focus
on introducing the framework and characteristics of different fusion methods. In addition, this article discusses
the development status of multimodal sentiment analysis, popular datasets, feature extraction algorithms,
application areas, and existing challenges. It is hoped that our work can help researchers understand the
current state of research in the field of multimodal sentiment analysis, and be inspired by the useful insights
provided in the article to develop effective models.
. Introduction

.1. From sentiment analysis to multimodal sentiment analysis

Sentiments are people’s inherent attitudes toward a particular topic,
erson, or entity. Understanding people’s attitudes is helpful for us to
ommunicate, learn, and make decisions. For example, a company or
tore can make corresponding improvements based on how customers
valuate their brand or product. The evaluation of netizen voting can
elp government agencies guide public opinion. That is why, for the
ast two decades, AI researchers have been trying to give machines the
ognitive ability to recognize, interpret, and express sentiments.

Early sentiment analysis mainly focused on text, in which only
he interrelationships of words and phrases are considered to analyze
entiment [1]. However, relying on text data alone is not sufficient to
xtract the sentiments expressed by humans, because the meaning of
hat a speaker says often changes dynamically based on non-verbal
ehaviors. For example, the model’s analysis of the word ‘‘great’’ in
he text is generally positive; but if an exaggerated expression or
arcastic laughter is added, the expression may turn into a negative
entiment. Multimodal sentiment analysis has been proposed to address
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this problem, where multimodal refers to the multiple modalities (text,
audio, and video) in which people communicate and express their
feelings. In-depth research and work over the years have shown that
multimodal systems are more effective than unimodal systems in iden-
tifying speakers’ sentiments. A multimodal sentiment analysis survey
published in 2015 reported that multimodal systems were consistently
more accurate than their best unimodal counterparts [2].

With the tremendous development of social media, a large number
of videos expressing personal opinions have been released on platforms
such as YouTube or Facebook, which provides excellent resource sup-
port for multimodal sentiment analysis [3]. These videos are usually
product reviews, movie reviews, policy critiques, etc. In addition to text
information, videos also provide rich visual and acoustic information,
and the feature fusion analysis of these modalities forms a multimodal
sentiment analysis system [4].

The framework of a multimodal sentiment analysis system can be di-
vided into the modeling of intra-modality dynamics and inter-modality
dynamics. Intra-modality dynamics refers to the dynamical analysis of
the interactions within each modality. For text, intra-modality dy-
namics are the interrelationships between words and phrases in a
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Fig. 1. General framework of a typical multimodal sentiment analysis system.
sentence. On the other hand, inter-modality dynamics refers to the
interaction between different modalities, which can be further di-
vided into synchronous and asynchronous according to whether the
modalities are aligned or not. Synchronous inter-modal interaction
means that the modalities have been aligned, and different modal-
ities with the same timestamp appear simultaneously. For example,
when a speaker expresses his opinion on the screen, the text can
be well-matched. Asynchronous inter-modal interaction means that
there is no alignment between modalities, and different modalities
may not appear simultaneously. For example, the speaker’s voice may
be heard after they are shown speaking. Existing datasets are often
unaligned but can be aligned using alignment tools such as P2FA [5].
Since the intra-modality representation must be obtained accurately
and the interaction between modalities is very complex, the biggest
challenge of multimodal sentiment analysis is how to create the intra-
modality representation and find the best fusion method to explore the
inter-modality interaction.

1.2. Scope of this survey

As more and more articles on multimodal sentiment analysis are
published, survey papers are needed to summarize the latest research
methods and forecast future research trends in this field. As early as
2017, Poria et al. [6] proposed a review of affective computing from
unimodal to multimodal fusion. Their survey elaborates on some basic
feature extraction methods and model frameworks for emotion recog-
nition and sentiment analysis. In the same year, Soleymani et al. [7]
also summarized the current situation of multimodal sentiment analysis
and offered an outlook on existing applications and future develop-
ment trends. Although these survey papers provided a comprehensive
overview of the current development at that time, many rich datasets
and advanced models have been proposed in the past few years. For
example, two of the most popular datasets in the field (CMU-MOSI [8]
and CMU-MOSEI [9]) are not present in these earlier surveys; nor are
models based on attention mechanisms.

In 2021, Gkoumas et al. [10] conducted detailed experiments and
analyses on 11 state-of-the-art models using CMU-MOSI and CMU-
MOSEI. The authors found that models that use attention mechanisms
often achieve better results. However, the number of experimental
models in this paper is too small to offer a more detailed generalization
about the field. Chandrasekaran et al. [11] investigated the application
of multimodal sentiment analysis to social media and proposed a large
number of methods and applications. Based on the modules used by the
models, Abdu et al. [12] divided 35 models into 8 categories and gave
an overview. However, none of these survey papers provide a detailed
description of the models that exist in the field from the perspective of
fusion methods.

Our work focuses on the sentiment analysis of three modalities (text,
audio, and video) and does not address other tasks such as bimodal
sentiment analysis or emotion recognition. According to the process of
multimodal sentiment analysis, we first list some popular datasets in
307
the field and analyze the commonly used feature extraction methods for
each modality. Then the fusion forms of existing models are analyzed,
and a taxonomy framework of fusion methods with eight classifications
is established. The fields where multimodal sentiment analysis can be
applied and the main challenges of the current model will be given
later. Finally, we summarize the content and contributions of the full
paper and illustrate several possible future research trends.

Our work aims to:
1. Provide an overview of existing work which will help researchers

gain a detailed understanding of available methods and resources for
multimodal sentiment analysis.

2. Classify existing model frameworks from the perspective of fusion
methods and give detailed descriptions of each method.

3. Summarize the application fields, expound on the existing chal-
lenges and identify future research directions.

1.3. Multimodal sentiment analysis process

Fig. 1 shows the general framework of a typical multimodal senti-
ment analysis system. The framework can be divided into two parts:
unimodal data processing and multimodal data fusion. First, feature
extractors are applied to textual, visual, and acoustic data respectively
to extract features. Then, the extracted features are transferred to
the fusion model to predict sentiment. Both of these components are
important for the performance of the whole model. The poor uni-
modal analysis leads to an insufficient understanding of intra-modal
interactions and degrades the performance of multimodal systems;
inefficient multimodal fusion leaves the interaction between modalities
incompletely utilized, which affects the stability of the multimodal
system.

The paper is organized as follows: Section 2 summarizes the most
popular datasets in multimodal sentiment analysis. Section 3 discusses
commonly used feature extraction techniques and related articles. Sec-
tion 4 classifies advanced models in multimodal sentiment analysis into
eight categories according to their fusion methods, and analyzes their
advantages and disadvantages while introducing the models in detail.
Section 5 discusses possible applications, and Section 6 illustrates some
of the challenges of existing models. Finally, the conclusions and future
research trends are discussed in Section 7.

2. Popular datasets in multimodal sentiment analysis

Table 1 presents popular datasets in the field of multimodal senti-
ment analysis. The first three columns show, respectively, the name,
publication year, and number of videos in the dataset. The fourth
column is the task type targeted by the dataset, including review videos,
news videos, and movies. The fifth column shows the language used
in the dataset, and the sixth column shows the sources of the dataset,
mostly mainstream social media and some movies. The seventh column
is the sentiment label annotated by the dataset, represented by the
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Table 1
Statistics on popular multimodal sentiment analysis datasets.

Dataset Year Videos Task Language Source Sentiments Available at

YouTube [4] 2011 47 Review English YouTube [−1, +1] http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
MOUD [13] 2013 80 Review Spanish YouTube [−1, +1] http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
ICT-MMMO [14] 2013 370 Review English YouTube, ExpoTV [−2, +2] http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
NRS [15] 2014 929 News English American news

programs and channels
[−1, +1] https://www.ee.columbia.edu/ln/dvmm/newsrover/sentimentdataset/

POM [16] 2016 1000 Review English ExpoTV [1, 7] http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
CMU-MOSI [8] 2016 93 Review English YouTube [−3, +3] http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
CMU-MOSEI [9] 2018 3228 Review English YouTube [−3, +3] http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
CH-SIMS [17] 2020 60 Movie Chinese movies, TV series,

variety shows
[−2, +2] https://github.com/thuiar/MMSA

CMU-MOSEAS [18] 2020 4000 Review Spanish, German,
Portuguese, French

YouTube [−3, +3] https://bit.ly/2Svbg9f
Likert scale. Specifically, [−1,+1] corresponds to [−1: negative, 0: neu-
tral, +1: positive]. [−2,+2] corresponds to [−2: strongly negative, -1:
weakly negative, 0: neutral, +1: weakly positive, +2: strongly positive].
[−3,+3] likewise represents a 7-point scale from highly negative to
highly positive. [1,7] corresponds from 1 (very unpersuasive) to 7 (very
persuasive). The last column provides access to the datasets, some of
which can be downloaded directly from the website, and some of which
can be obtained by email to the authors.

2.1. YouTube dataset

The YouTube dataset was developed by Morency et al. [4] in 2011
nd consists of 47 videos collected from YouTube. The dataset contains
hree modalities: visual, textual, and acoustic, and is the first dataset
o be used in the trimodal sentiment analysis task. These videos are
haracterized by diversity, multimodality, and the presence of ambient
oise. The authors collected the videos not based on a specific topic,
ut via the following keywords: opinion, product review, best perfume,
oothpaste, war, job, business, camera review, I hate... etc. 47 videos
re divided into 20 female and 27 male speakers who are approximately
4–60 years old. Although the speakers come from different cultural
ackgrounds, they all express themselves in English. Each video con-
ains 3–11 utterances and is assigned one of three labels: negative,
eutral, or positive.

.2. MOUD dataset

Developed by Perez-Rosas et al. [13] in 2013, the Multimodal
pinion Utterances Dataset (MOUD) is the first multimodal opinion
atabase annotated at the discourse level, addressing the relative im-
ortance of modality and individual characteristics. The authors col-
ected a set of videos of product opinions expressed in Spanish from
ouTube, using the following keywords: my favorite products, not rec-
mmended products, not recommended movies, recommended books,
tc. The keywords are not specific to a particular product type; instead,
wide variety of product names are included, so the dataset has a de-

ree of generality across the broad field of product reviews. The dataset
onsists of 80 videos randomly selected from the collected videos,
ncluding 15 male speakers and 65 female speakers aged approximately
0 to 60. A 30-second opinion segment is manually selected from each
ideo and then split into an average of 6 utterances, resulting in a
ataset of 498 utterances. The average duration of these utterances is
s, with a standard deviation of 1.2 s. Each utterance is labeled as

ositive, negative, or neutral.

.3. ICT-MMMO dataset

Developed by Wollmer et al. [14] in 2013, the Institute for Cre-
tive Technologies’ Multi-Modal Movie Opinion (ICT-MMMO) dataset
ncludes a collection of real review videos from YouTube and ExpoTV,
hich mainly contains movie review videos by non-professional users.
f the 370 movie review videos collected, 228 were positive reviews,
308
23 were neutral, and 119 were labeled negative. Each reviewer speaks
in English, and commentary videos vary in length from 1–3 min. The
authors followed previous work on sentiment analysis and used 5
sentiment labels: strongly negative, weakly negative, neutral, weakly
positive, and strongly positive.

2.4. NRS dataset

Developed by Ellis et al. [15] in 2014, the News Rover Sentiment
(NRS) dataset is the first dataset to study sentiment analysis in the field
of news. The authors collected videos of various US news programs and
channels recorded between August 13, 2013, and December 25, 2013.
The video length of the dataset is limited to between 4 and 15 s. The
reason for this restriction is that the authors believe that short videos
make it difficult to truly decipher people’s emotional expressions, and
videos longer than 15 s may contain multiple sentences with different
sentiments. The final dataset has 929 clips, each annotated with three
categories of sentiment: positive, negative, or neutral.

2.5. POM dataset

The Persuasive Opinion Multimedia (POM) dataset, developed by
S. Park et al. [16] in 2016, includes persuasive subjective annotations
and high-level related attributes. The dataset includes 500 5-star review
videos (306 men, 194 women) and 500 1- or 2-star review videos
(363 men, 137 women) collected from ExpoTV. A 5-star rating is
considered positive, and a 1- or 2-star rating is considered negative. The
average length of the videos is about 93 s, with a standard deviation of
about 31 s. The authors annotated the persuasiveness of the speaker
from 1 (very unconvincing) to 7 (very convincing). In addition to
investigating persuasiveness, another feature of the dataset is a better
understanding of other high-level attributes that may be associated
with persuasiveness (e.g., confidence, trustworthiness, dominance, hu-
mor, passion, physical attractiveness, and professional appearance).
The authors argued that additional annotation of high-level attributes
will make the dataset more widely applicable to other related research
topics (such as personality trait modeling).

2.6. CMU-MOSI dataset

Developed by Zadeh et al. [8] in 2016, the Multimodal Opinion-
level Sentiment Intensity (CMU-MOSI) dataset is the first opinion-level
annotation corpus for sentiment and subjectivity analysis in online
video. Besides annotating subjectivity and sentiment intensity, visual
features of each opinion annotation and audio features annotated every
millisecond were also included. The MOSI dataset contains a total of
3702 video clips, including 2199 opinion clips. The sentiment of each
opinion section is annotated as a range from highly negative to highly
positive. The final dataset includes a total of 93 randomly selected
videos featuring 89 different speakers. It is worth mentioning that
visual features such as facial action units and over 32 audio features

have been automatically extracted from MPEG files.

http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
https://www.ee.columbia.edu/ln/dvmm/newsrover/sentimentdataset/
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
http://immortal.multicomp.cs.cmu.edu/raw_datasets/processed_data/
https://github.com/thuiar/MMSA
https://bit.ly/2Svbg9f
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2.7. CMU-MOSEI dataset

The CMU Multimodal Opinion Sentiment and Emotion Intensity
(CMU-MOSEI) dataset, developed by Zadeh et al. [9] in 2018, is the
next generation of CMU-MOSI. CMU-MOSEI contains 23,453 annotated
video clips from 1000 different speakers (57% male and 43% female).
During data collection, the authors used face detection to analyze
whether there is only one speaker in the video to ensure the video is
a monologue. The dataset has a total of 250 topics: the 3 most com-
mon topics are reviews (16.2%), debate (2.9%), and consulting (1.8%)
while the remaining topics are almost evenly distributed. Sentiment
annotation is the same as in CMU-MOSI: each sentence is annotated for
a sentiment on a [−3,3] Likert scale. Ekman’s emotions of happiness,
adness, anger, fear, disgust, and surprise are also annotated on a [0,3]
ikert scale for the presence of emotion x: [0: no evidence of x, 1:
eakly x, 2: x, 3: highly x].

.8. CH-SIMS dataset

The Chinese Single- and Multimodal Sentiment (CH-SIMS) dataset
as developed by Yu et al. [17] in 2020. The authors collected 60
riginal videos from movies, TV series, and variety shows, and obtained
281 video clips (1500 male, 781 female). The characters in these video
lips have rich personality backgrounds and a wide age range, and each
ideo clip has multimodal annotations and three modality-independent
nimodal annotations. Researchers can both study interactions between
odalities and perform unimodal sentiment analysis using independent
nimodal annotations. The average length of segments in SIMS is 3.67s,
nd the average word length of each clip is 15. The annotation process
tarted with unimodal annotation for each tag, in the order of text,
udio, silent video, and finally multimodal annotation. For each clip,
he authors classified its sentiment into one of five categories: negative,
eakly negative, neutral, weakly positive, and positive.

.9. CMU-MOSEAS dataset

After the work of CMU-MOSI and CMU-MOSEI, considering that
ome widely spoken languages have few or no large-scale datasets
n the field of multimodal sentiment analysis, Zadeh et al. [18] pro-
osed the CMU Multimodal Opinion Sentiment, Emotions and At-
ributes (CMU-MOSEAS) dataset in 2020. This is the first large-scale
ultimodal language dataset for Spanish, Portuguese, German, and

rench. Videos were found manually from YouTube using more than
50 different search terms, and no more than five videos were collected
rom a single channel to ensure diversity across speakers. The authors
nnotated the sentences with 20 labels, including sentiment, subjec-
ivity, emotions, and attributes, where sentiment was annotated as
−3,+3]. The entire dataset contains a total of 4000 monologue videos
1000 per language), spanning 1645 speakers and 40 000 annotated
entences (10 000 per language). Each language has a large set of unsu-
ervised sentences to enable unsupervised pre-training of multimodal
epresentations. CMU-MOSEAS places special emphasis on protecting
he privacy of speakers. Although the videos are publicly available on
ouTube, a specific EULA (End User License Agreement) is still required
o download the labels. A unique aspect of CMU-MOSEAS is that it
llows multimodal statistical comparisons between different languages;
or example, Spanish and Portuguese report positive sentiment more
ommonly.

. Feature extraction

Unimodal feature extraction is an important building block for
ultimodal sentiment analysis systems. In this section, we will intro-
uce the feature extraction methods of text, video, and audio respec-
ively, and list some works using the feature extraction methods we
entioned, as shown in Table 2. To better provide inspiration, we

nly focus on the popular methods since deep learning was widely
eveloped.
309
Table 2
The feature extraction methods used in models.

Model Textual Visual Acoustic

THMM [4] Polarized words OKAO Vision OpenEAR
SVM [13] Bag-of-words CERT OpenEAR
MKL [19] Word2vec CLM-Z openSMILE
SAL-CNN [20] Word2vec CLM-Z openSMILE
TFN [21] GloVe Facet COVAREP
LMF [22] GloVe Facet COVAREP
HFFN [23] GloVe Facet COVAREP
LMFN [24] GloVe Facet COVAREP
GME-LSTM(A) [25] GloVe Facet COVAREP
MARN [26] GloVe Facet COVAREP
MFN [27] GloVe Facet COVAREP
RAVEN [28] GloVe Facet COVAREP
SWRM [29] BERT Facet COVAREP
MCTN [30] GloVe Facet COVAREP
MulT [31] GloVe Facet COVAREP
MAG [32] BERT Facet COVAREP
ICDN [33] GloVe Facet COVAREP
AMOA [34] BERT OpenFace 2.0 openSMILE
ICCN [35] BERT Facet COVAREP
MISA [36] BERT Facet COVAREP
HyCon [37] BERT Facet COVAREP
HGraph-CL [38] BERT Facet COVAREP
BC-LSTM [39] Text-CNN 3D-CNN openSMILE
MMMU-BA [40] GloVe Facet COVAREP

3.1. Textual feature extraction

With the development and maturation of deep learning technologies
such as neural networks, word embedding technology has been applied
to the field of text feature extraction. Word embedding uses neural
networks to learn the correlation between parts of speech and word
meanings, and expresses words with similar meanings in the form of
vectors with close Euclidean distances. It can convert high-dimensional
sparse vectors into low-dimensional dense vectors, which mitigates
computational demands and solves the problem that vectors do not
contain spatial and semantic information. Common word embedding
methods include NNLM [41], HLBL [42], and Word2Vec [43], with the
latter the most commonly used. Word2Vec contains two different styles
of models: CBOW and Skip-gram. These have different goals in that
the former predicts the center word based on the surrounding words,
while the latter does the opposite. These methods can capture complex
patterns beyond lexical similarity, with general improvements on other
tasks as well. However, the disadvantages are that large datasets are
required and statistics cannot be fully utilized.

Most recent work uses GloVe to extract text features. In addition,
large pre-trained models such as BERT are often used. GloVe [44]
shares many conceptual similarities with Word2Vec and adds statistics-
based information. This enables GloVe to use both the global informa-
tion of the corpus and local contextual features. BERT can process the
entire sequence in parallel, using an attention mechanism to gather
contextual information about words. It is then encoded with a rich
vector representing the context so that words related to all other words
in the sentence are processed simultaneously. The model can learn how
to derive the meaning of a given word from other words in the sentence.

3.2. Visual feature extraction

Visual feature extraction serves mainly to extract people’s facial
expression features and body posture from video because the informa-
tion contained in it is the key to analyzing the speaker’s sentiment.
Some networks (especially CNN) have a good ability to extract features
from images, avoiding the tediousness of manual feature extraction.
Benitez-Quiroz et al. [45] proposed a deep neural architecture that
addresses this problem by combining learned local and global features
in the initial stage and replicates the message passing algorithm be-
tween classes, similar to the graphical model inference approach in
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later stages. Tran et al. [46] proposed a simple and efficient deep
three-dimensional convolutional neural network (3D-CNN) for spa-
tiotemporal feature extraction, which can be used in different tasks,
such as action recognition, same action judgment, and dynamic scene
recognition.

Nowadays, most of the features are extracted by neural networks
or public libraries. The most commonly used public libraries include
OKAO, CERT, OpenFace, and Facet. OKAO Vision detects and ex-
tracts facial features at each frame, then returns a smile intensity
(0–100) and eye gaze direction. Computer expression recognition tool-
box (CERT) [47] allows users to automatically extract the following
visual features: smile and head pose estimates, facial AUs, and eight
basic emotions (anger, contempt, disgust, fear, joy, sadness, surprise,
and neutral). The MultiComp OpenFace 2.0 toolkit [48] extracts 68 fa-
cial landmarks, 17 facial action units, head pose, head orientation, and
eye gaze. The Facet library extracts a set of visual features, including
facial action units, facial landmarks, head pose, gaze tracking, and HOG
features.

3.3. Acoustic feature extraction

Deep learning has also attracted more and more attention in audio
classification research. Long Short-Term Memory (LSTM) [49] and bi-
directional LSTM [50] have been widely used for hand-extracted acous-
tic features. Since deep networks are often used to automatically extract
features in computer vision, a research question is whether the network
can be replicated or not. The answer was given by Anand et al. [51],
who used CNN to extract features from audio and then passed them into
the classifier for the sentiment classification task. Deep neural networks
based on generalized discriminant analysis (GDA) are also very popular
for automatic feature extraction from raw audio data.

Recently, most multimodal sentiment analysis models use OpenEAR,
openSMILE, LibROSA, COVAREP, and other open-source libraries to
extract acoustic features. The open source software OpenEAR [52]
automatically computes a set of acoustic features, including prosody,
energy, vocal probability, spectrum, and cepstral features, and uses
z-standardization for speaker normalization. All features and func-
tions can be calculated using the online audio analysis toolkit openS-
MILE [53]. Specifically, the features extracted by openSMILE consist of
several low-level descriptors (LLDs) such as MFCC, pitch, and sound
intensity and their statistical functions. Some of these functions are
amplitude mean, arithmetic mean, root quadratic mean, standard de-
viation, etc. The LibROSA speech toolkit [54] can be used to extract
acoustic features at 22 050 Hz. A total of 33-dimensional frame-level
acoustic features are extracted, including 20-dimensional MFCC and
12-dimensional constant q transform (CQT). These traits are related
to mood and speech intonation. For each opinion utterance audio,
the COVAREP acoustic analysis framework [55] can also be used to
extract acoustic features, including 12 MFCC, glottal source parameters,
peak slope parameters, maximum dispersion quotients (MDQ), and
Liljencrants-Fant (LF).

4. Fusion methods

The use of efficient methods to fuse feature information from differ-
ent modalities is a major challenge for multimodal sentiment analysis.
In this section, we classify 42 methods into 8 categories according to
their fusion methods, as shown in Fig. 2. We describe the framework
of each model in detail and list the advantages and disadvantages of
each model, which can provide inspiration for readers to carry out their
work. At the end of this section, we systematically compare the fusion
methods of each classification and describe the development driven by
310

the advantages and disadvantages of the models.
4.1. Early fusion

Early fusion is also called feature-level fusion. By extracting the
features of each modality and merging them at the input level, a joint
representation is constructed, and sentiment classification is performed
on this basis. The framework of this approach can be simple as it relies
on general models (Support Vector Machine (SVM [56]) or deep neural
networks) to learn view-specific and cross-view dynamics without any
specific model design. However, early-stage fusion results in a lack of
detailed modeling of view-specific dynamics, thereby losing contextual
and temporal dependencies within each modality, which in turn affects
the modeling of cross-view dynamics and leads to an overfitting of the
data. Table 3 summarizes the advantages and disadvantages of each
model.

4.1.1. THMM (Tri-modal Hidden Markov Model)
Morency et al. [4] first proposed the task of tri-modal sentiment

analysis and designed a model to solve it. After extracting the features
of each modality and concatenating them, a tri-modal HMM classifier
is used to learn the hidden structure of the input signal.

4.1.2. SVM (Support Vector Machine)
Perez-Rosas et al. [13] combined the features collected from all

multimodal streams into a feature vector, thereby generating a vector
for each utterance and using an SVM classifier to decide the sentimental
orientation of the utterance. S. Park et al. [16] used Support Vector
Machines (SVMs) for classification and Support Vector Regressions
(SVRs) for regression experiments with the radial basis function kernel
as the prediction models.

4.1.3. MKL (Multiple Kernel Learning)
Poria et al. [19] used two different feature selectors to reduce the

number of features after extracting tri-modal features. One is based
on the cyclic correlation-based feature subset selection (CFS), and the
other is based on principal component analysis (PCA). In addition
to improving the processing time of the model, the feature selection
method also slightly improves the experimental results. Finally, the
processed feature vectors are concatenated, and the classifier is trained
with a multi-kernel learning (MKL) algorithm. In the following year,
based on previous work, the authors [57] proposed a convolutional
recurrent multiple kernel learning (CRMKL) model, specifically using
a convolutional RNN for visual sentiment detection, which further
improved the experimental results.

4.1.4. EF-LSTM (Early Fusion LSTM)
Zadeh et al. [26] concatenated the inputs from different modalities

at each time step and used it as the input to a single LSTM.

4.1.5. Self-MM (Self-Supervised Multi-task Multimodal sentiment analysis
network)

Yu et al. [58] proposed a Self-Supervised Multi-task Multimodal sen-
timent analysis network (Self-MM) to divide the multimodal sentiment
analysis task into a multimodal task and three independent unimodal
subtasks. The multimodal task is similar to other early fusion methods,
which is why this method is classified in the category of early fusion
methods. A major feature of Self-MM is the design of a label generation
module based on a self-supervised learning strategy to obtain indepen-
dent unimodal supervision. For example, if the multimodal annotation
is closer to the positive center and the unimodal representation is more
negatively centered, the Unimodal Label Generation Module (ULGM)
will impose a negative relative offset value to the multimodal label to
form the Unimodal Label. A hard sharing strategy is adopted to share
the bottom representation learning network between the multimodal
task and different unimodal tasks. The result is that the multimodal
and unimodal tasks are jointly trained to learn their congruence and
dissimilarity, respectively. The experiment results verify the reliability

and stability of the automatically generated unimodal labels.
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Fig. 2. Effective multimodal fusion models in multimodal sentiment analysis.
Table 3
Characteristics of early fusion methods.

Methods Advantages Disadvantages

THMM ∙ The task of trimodal sentiment analysis is proposed for the first time
∙ Tri-modal Hidden Markov Model (THMM)

∙ Small scale dataset

SVM ∙ Support Vector Machines (SVM) ∙ Difficult to implement for large-scale training samples

MKL ∙ Multiple kernel learning (MKL)
∙ Use deep CNN to extract features from text

∙ Small datasets can lead to early overfitting

EF-LSTM ∙ Concatenate the inputs from different modalities at each time step and use that as
the input to a single LSTM

∙ The training process is difficult to parallelize

SELF-MM ∙ A unimodal label generation module based on the self-supervised strategy
∙ A novel weight self-adjusting strategy is introduced to balance different task loss
constraints

∙ The generated audio and vision labels are limited by the
preprocessing features
4.2. Late fusion

Late fusion, also known as decision-level fusion, first conducts sen-
timent analysis based on each modality, and then proposes different
mechanisms to incorporate unimodal sentiment decisions into the final
decision, including averaging [59], majority voting [60], weighted
sum [61], or learnable models. This fusion approach is usually strong
in modeling view-specific dynamics, and due to the integration of its
modules, the model is usually lightweight, flexible, and adapts well to
changes in the number of modalities. However, since separate models
are built for each modality, inter-modal interactions are often not
modeled efficiently because the dynamics between these modalities
are often more complex than decision voting. Table 4 summarizes the
advantages and disadvantages of each model.
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4.2.1. Averaging
Nojavanasghari et al. [62] trained a unimodal classifier for each of

the three modalities, then averaged the confidence scores of individual
unimodal classifiers to make the final prediction.

4.2.2. DF (Deep Fusion)
Nojavanasghari et al. [62] trained a unimodal classifier for each

of the three modalities, then used the confidence score of each uni-
modal classifier (c); along with the complementary scores (1-c) as
input features to a fusing deep network that was used to make final
predictions.

4.2.3. SAL-CNN (Select-Additive Learning CNN)
Wang et al. [20] proposed a SAL-CNN model. After the CNN model

is fully trained, the authors use SAL to improve its generality and pre-
dict sentiment, trying to prevent identity-dependent information from
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Table 4
Characteristics of late fusion methods.

Methods Advantages Disadvantages

Averaging ∙ Average the output of unimodal classifiers ∙ If a modality is noisy, it may affect the final prediction

DF ∙ The model learns the importance of each modality and assigns weights to the final
model accordingly

∙ Cannot handle noisy training data

SAL-CNN ∙ Select-Additive Learning
∙ Force the original model to discard confounding elements to improve the generality
of the trained neural network

∙ Added Gaussian noise may impair normal model predictions

Majority ∙ Do majority voting for classification tasks and predict expected labels for regression
tasks

∙ Some close key outputs may be ignored
Table 5
Characteristics of tensor-based fusion methods.

Methods Advantages Disadvantages

TFN ∙ Learn both the intra-modality and inter-modality dynamics end-to-end
∙ The tensor fusion layer uses a 3-fold Cartesian product of the three output vectors of the
embedding layer

∙ The resulting representation has a very large
dimensionality and thus a large number of parameters

LMF ∙ Similar to TFN, but adds an additional low-rank factor to reduce computational memory
∙ Can perform robustly in a wide range of low-rank settings and be more efficient in training
and inference

∙ Modeling of local interactions neglected

MRRF ∙ Tuckers tensor decomposition method allows different compression ratios for each modality
∙ Redundant information repeated across modalities can be eliminated and lead to less
information loss and minimal parameters

∙ Require training and testing on larger datasets

T2FN ∙ Temporal Tensor Fusion Network (T2FN)
∙ Regularization method based on tensor rank minimization

∙ Imperfect data increases tensor rank

HFFN ∙ Divide, Conquer and Combine
∙ Local fusion by exploring the interaction of partially aligned feature vectors of different
modalities within a sliding window
∙ Explore the attention mechanism between local interactions through an Attentive
Bi-directional Skip-connected LSTM

∙ It may not be optimal for all three modalities to be
treated equally
∙ There may be a lot of redundant information in the
feature vector

LMFN ∙ The feature vector corresponding to each modality is divided into multiple segments, and
each local interaction is learned through a tensor fusion procedure
∙ Model global interactions using a Bidirectional Multiconnected LSTM
∙ The calculation cost is linearly related to the dimension of the feature vector

∙ Performance on CMU-MOSEI is weaker than on other
datasets
∙ Dividing the feature vectors into segments of equal size
may not be optimal
being learned in a deep neural network. The SAL method consists of a
two-stage process (selection and addition). During the selection phase,
SAL identifies the confounding factors from the latent representation
learned by neural networks. During the addition phase, SAL forces the
original model to discard the confounding elements by adding Gaussian
noises to these representations. SAL nearly maintains the clustering
structure of identity, but greatly improves the clustering structure of
the category of sentiment.

4.2.4. Majority
Zadeh et al. [26] performed majority voting for classification tasks,

and predicted the expected label for regression tasks.

4.3. Tensor-based fusion

Tensor-based methods mainly compute the tensor product of uni-
modal sentence representations to obtain multimodal sentence repre-
sentations. This requires first converting the input representation into
a high-dimensional tensor, then mapping it back to a low-dimensional
output vector space, which is a typical non-concatenated feature fu-
sion method. Tensors are powerful because they capture important
higher-order interactions across time, feature dimensions, and multiple
modalities [63]. However, a drawback of this approach is that the
computational complexity grows exponentially and there is no fine-
grained word-level interaction between cross-modalities. The method
first embeds the three modalities of text, vision, and audio to explore
the dynamics within the modalities, then fuses multimodal embedding
representations to explore dynamic interactions between modalities.
Table 5 summarizes the advantages and disadvantages of each model.
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4.3.1. TFN (Tensor Fusion Network)
Zadeh et al. [21] proposed a Tensor Fusion Network (TFN) model,

which learns both the intra-modality and inter-modality dynamics end-
to-end. The model is divided into three parts: Modality Embedding
Subnetworks, Tensor Fusion Layer, and Sentiment Inference Subnet-
work.

The Modality Embedding Subnetworks use an LSTM network with
forget gates to learn time-dependent language representations, which
are then joined to a fully connected network to obtain language em-
beddings. For acoustic and visual features, FACET and COVAREP are
used to extract features, and after average pooling, they are respectively
connected to deep neural networks to obtain embeddings. In the Tensor
Fusion Layer, a triple Cartesian product is used for the three output
vectors of the embedding layer, which fully combines the unimodal,
bimodal, and trimodal interactions in tensor fusion. The resulting mul-
timodal tensor is passed to a fully connected deep neural network
called the Sentiment Inference Subnetwork, and the prediction result
is obtained.

4.3.2. LMF (Low-rank Multimodal Fusion)
To address the problem of exponential increase in computational

complexity introduced when converting inputs to tensors, Liu et al. [22]
proposed a Low-rank Multimodal Fusion (LMF) method, which uses
low-rank tensors to perform multimodal fusion, greatly reducing the
computational complexity. The model is similar to TFN, but decom-
poses the weights into low-rank factors, reducing the number of pa-
rameters. Moreover, the experimental results show that the proposed
model can perform robustly in a wide range of low-rank settings, and
it is more effective in training and reasoning than other methods using
tensor representation.
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4.3.3. MRRF (Modality-based Redundancy Reduction Fusion)
Inspired by TFN [21] and LMF [22], Barezi et al. [64] proposed

a modality-based redundancy reduction fusion (MRRF) model to un-
derstand and modulate the relative contribution of each modality in
multimodal inference tasks. Whereas the factorization in LMF utilizes
a single compression rate across all modalities, MRRF uses Tucker
tensor decomposition, which allows a different compression rate for
each modality, enabling the model to adapt to changes in the amount
of useful information between different modalities. With the same
advantages as the tensor fusion method, the compression method re-
duces model complexity and decreases the number of parameters with
minimal loss of information, so it can be used as a regularizer to avoid
overfitting. Moreover, through the study of sensitivity to modality-
specific compression rate, it is helpful in understanding the relative
amount of non-redundant information in each modality.

4.3.4. T2FN (Temporal Tensor Fusion Network)
Clean multimodal time series often show correlations across time

and modalities, presenting a low-rank tensor representation [65]. How-
ever, the presence of imperfect modalities, missing entries, and noise
corruption can break these natural correlations and lead to high-rank
tensor representations. Therefore, Paul et al. [66] proposed a Temporal
Tensor Fusion Network (T2FN) model based on a tensor rank minimiza-
tion regularization method, which learns tensor representations of true
correlations and latent structures in multimodal data and effectively
normalizes their rank. T2FN extends the TFN model by adding a
temporal component that enhances the ability to capture high-rank
tensor representations, which in itself leads to improved prediction
performance. The adaptation to imperfect data reflects the robustness
of the model.

4.3.5. HFFN (Hierarchical Feature Fusion Network)
Also inspired by TFN [21], in order to solve the problem brought

by high-rank tensors, Mai et al. [23] proposed a Hierarchical Feature
Fusion Network (HFFN) to improve efficiency through a hierarchical
fusion framework. The whole model can be divided into three stages:
‘‘divide’’, ‘‘conquer’’ and ‘‘combine’’. The ‘‘divide’’ and ‘‘conquer’’ stages
focus on local fusion, and the ‘‘combine’’ stage focuses on global fusion.

In the ‘‘divide’’ stage, the trimodal feature vectors are aligned to
form a multimodal embedding and segmented into local parts using a
sliding window to explore intermodal dynamics. In the ‘‘conquer’’ stage,
the outer product is applied to fuse the features within each local block
to explore the interactive state dynamics. Compared with other models
that employ outer products, the efficiency is significantly improved
due to the characteristics of the local model. In the ‘‘combine’’ stage,
global interactions are modeled by exploring the interconnections and
contextual dependencies between locally fused tensors. In response
to the lack of connection between local fusion vectors, the authors
proposed Attentive Bi-directional Skip-connected LSTM (ABS-LSTM),
an RNN variant. ABS-LSTM introduces bidirectional skip connections of
memory cells and hidden states into LSTM, and integrates an attention
mechanism to transfer information more efficiently and learn holistic
representations to obtain a holistic view of multimodal information. Fi-
nally, the global interaction is input to the emotional inference module
to obtain the final prediction.

4.3.6. LMFN (Locally Confined Modality Fusion Network)
In the second year of proposing HFFN [23], Mai et al. [24] presented

a new multimodal fusion framework called the locally confined modal-
ity fusion network (LMFN). For intra-modal interactions, each modality
has a specific unimodal context-dependent learning network UC-LSTM.
Similar to BC-LSTM, UC-LSTM consists of a bidirectional LSTM layer
and a dense layer, which can model the temporal relationship between
consecutive utterances in a video to help better understand the current
utterance. As in HFFN, the authors divided the fusion into local and
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global stages. In local fusion, the feature vector corresponding to each
modality is divided into multiple segments, and each local interaction
is learned through a tensor fusion process. The local vectors are then
passed to the global fusion stage, where dependencies are learned
by a Bidirectional Multiconnected LSTM (BM-LSTM) to model global
interactions, establishing direct connections between cells and local
tensor states that are several time steps apart. Finally, the output is
connected to the decision layer to arrive at sentiment predictions.

4.4. Word-level fusion

The word-level fusion approach takes into account both view-
specific and cross-view interactions, and efficiently explores time-
dependent interactions by modeling interactions at each time step.
The model framework of this fusion method generally consists of two
modules: a temporal modeling module and an attention module.

In the temporal modeling module, modality-specific dynamics are
modeled through a temporal modeling network (LSTM, LSTHM, 1D
temporal CNN, etc.).

The attention module receives the output of the temporal modeling
module and uses the attention mechanism and its variants to model
important information in dynamic cross-modal interactions.

Table 6 summarizes the advantages and disadvantages of each
model.

4.4.1. GME-LSTM(A) (Gated Multimodal Embedding LSTM with Temporal
Attention)

Diverging from previous multimodal sentiment analysis work that
focused on the overall information of speech fragments, Chen et al. [25]
proposed a Gated Multimodal Embedding LSTM with Temporal At-
tention (GME-LSTM(A)) model. This is the first method to perform
multimodal fusion at the word level. The model is divided into two
modules: the Gated Multimodal Embedding Layer and the LSTM with
Temporal Attention module.

Gated multimodal embedding learns local interactions between
modalities at each time step (word level). Since previous models have
shown that noise in visual and acoustic modalities can impair the
performance of the textual modality, the authors used an on/off input
gate controller on the acoustic/visual features for selective multimodal
fusion, which alleviates the difficulty of fusion in noisy modalities.
Features from the three modalities are concatenated and then fed
into the next layer. LSTM with temporal attention captures temporal
interactions on multimodal embedding layers and adaptively focuses on
the most important time steps. This module learns global interactions
between modalities, enabling the model to account for both local and
global interactions.

4.4.2. MARN (Multi-Attention Recurrent Network)
Zadeh et al. [26] proposed a Multi-attention Recurrent Network

(MARN), which consists of two key components: Long-short Term
Hybrid Memory and Multi-attention Block. Long-short Term Hybrid
Memory (LSTHM) is an extension of LSTM that redesigns its memory
components so that mixed information can be carried. This hybrid
memory can store not only intra-modal information for a specific
modality but also important cross-view dynamics related to that modal-
ity. Among them, the component that discovers the interactive infor-
mation of the transmembrane state is the Multi-attention Block (MAB),
which is the uniqueness and advantage of this model. At time step t,
the MAB accepts hidden states from all LSTHMs to outline the multiple
cross-view dynamics that exist. The authors posit the K largest cross-
view dynamics at each timestamp and use a deep neural network to
obtain these K attention coefficients. Then, according to these coeffi-
cients, the output dimensions are weighted to form the dynamic code
z of the LSTHM at time t, which is passed to the next time step.
𝑡
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Table 6
Characteristics of word-level fusion methods.

Methods Advantages Disadvantages

GME-LSTM(A) ∙ The first to use word level modality fusion
∙ Gated multimodal embedding filters out noise from acoustic and visual data
∙ LSTM with temporal attention performs word-level fusion at a finer fusion
resolution between input modalities

∙ The temporal correlation of the individual modality is
ignored
∙ Obtaining the word-level features needs to perform the
force-alignment, which is time-consuming

MARN ∙ Long-short Term Hybrid Memory (LSTHM)
∙ Multi-attention Block (MAB)
∙ Discover interactions between modalities over time and store them in the hybrid
memory of the recurrent component

∙ Cannot learn the correlations across different modalities

MFN ∙ Multi-view sequential learning
∙ Delta-memory Attention Network (DMAN)
∙ Memorize long-term interactions and internal behaviors across modalities, and store
and update them in LSTM

∙ Cross-view dynamics are not explored

DFG ∙ Replace the original fusion component DMAN in MFN with DFG ∙ Useless visual modality can sometimes hurt model
performance

RMFN ∙ Recurrent Multistage Fusion Network (RMFN)
∙ Decompose the fusion problem into multiple stages, each of which focuses on a
subset of multimodal signals for specialized and efficient fusion
∙ The multistage fusion method can be easily extended to memory-based fusion
methods

∙ Lack of representational power to accurately model the
structure of nonverbal behavior at the subword level

HED ∙ A hierarchical encoder–decoder framework
∙ The encoder learns word-level features from each modality that are then
formulated into conversation-level features
∙ The decoder decodes features to each time instance, further decomposing them into
attributes for sentiment prediction

∙ Not suitable for small datasets
∙ Decoding the entire conversation into time instances with
equal length results in the inability to make sentence-level
predictions

RAVEN ∙ Nonverbal sub-networks
∙ Model the fine-grained structure of nonverbal subword sequences
∙ Use an attention gating mechanism to yield the nonverbal shift vectors which
characterizes the extent and direction of word changed due to nonverbal context

∙ Only a simple LSTM is used for making predictions

SWRM ∙ Sentiment word position detection
∙ Apply multimodal gating network to filter out useless information from the input
word embeddings
∙ Utilize useful information from candidate sentiment words as a supplement to the
filtered word embeddings
∙ Can be adapted for other multimodal feature fusion models easily

∙ Only text is used to detect the position of sentiment words,
no other modalities are exploited
4.4.3. MFN (Memory Fusion Network)
Zadeh et al. [27] proposed a novel neural model for multi-view

sequence learning, named the Memory Fusion Network (MFN). The
sequential interactions of each modality over time are encoded using
LSTMs. The output of the LSTM system is then concatenated into
an attention layer to identify cross-view interactions by associating a
relevance score with the memory dimension of each LSTM, called the
Delta-memory Attention Network (DMAN). The outputs of the DMAN at
time steps t-1 and t are passed to multi-view gated memory to indicate
what dimensions in the memory system of LSTMs constitute cross-view
interactions. The module then updates its content based on the output
of the DMAN and its previously stored content, controlled by two sets
of gates, both controlled by a neural network. At each time step, the
retention gate assigns how much of the current state of the Multi-view
Gated Memory to remember and the update gate assigns how much of
the Multi-view Gated Memory to update based on the updated proposal.
The output is the final state of the multi-view gated memory and the
vector concatenation of the LSTMs representing the information of a
single sequence.

4.4.4. DFG (Dynamic Fusion Graph)
In addition to proposing CMU-MOSEI, Zadeh et al. [9] defined

the establishment of n-modal dynamics as a hierarchical process and
proposed a new fusion model called the Dynamic Fusion Graph (DFG).
The original fused DMAN in MFN [27] is replaced by DFG, and the final
result model is called the Graph Memory Fusion Network (Graph-MFN).

4.4.5. RMFN (Recurrent Multistage Fusion Network)
Liang et al. [67] proposed a Recurrent Multistage Fusion Network

(RMFN), which decomposes the multimodal fusion problem into mul-
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tiple recursive stages, each focusing on a subset of multimodal signals
for specialized and efficient fusion. Multistage fusion mainly consists of
three modules: Highlight, Fuse, and Summarize. First, each modal se-
quence is modeled with an intra-modal recurrent neural network [26].
At time step t, each intra-modal recurrent network will output a uni-
modal representation. Then in the multistage fusion process, the two
modules of Highlight and Fuse are repeated at each stage, where
the Highlight module identifies subsets of multimodal signals, and
the Fuse module fuses the highlighted features locally and combines
them with the previous stage. Finally, the Summarize module converts
the multimodal representation of the last stage into a transmembrane
state representation, which is passed to the next time step. The final
representation integrates the last output of the LSTHMs and the last
transmembrane state representation. By combining this fusion method
with a recurrent neural network system, interactions within time and
patterns are simulated.

4.4.6. HED (Hierarchical Encoder-Decoder)
Gu et al. [68] proposed a hierarchical encoder–decoder structure

with an attention mechanism for conversation analysis. The system
consists of two modules: the hierarchical encoder and the hierarchical
decoder. The hierarchical encoder first synchronizes and combines the
extracted feature-shared representations, then uses a temporal atten-
tion mechanism to select important word vectors to form a single
feature vector. In the hierarchical decoder, features are decoded to each
temporal instance, and finally multi-label predictions are obtained.

4.4.7. RAVEN (Recurrent Attended Variation Embedding Network)
Considering that previous work [22,26,67] used a simple averaging

strategy to summarize subword information during each word span and
lacked the representational ability to accurately model the structure
of nonverbal behaviors at the subword level, Wang et al. [28] pro-

posed a Recurrent Attended Variation Embedding Network (RAVEN)
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which can be divided into three parts: Nonverbal Sub-networks, Gated
Modality-mixing Network, and Multimodal Shifting. First, the non-
verbal sub-network uses two independent LSTMs to encode the fine-
grained structure of non-verbal behaviors, and generate embedding
vectors. The gated modality-mixing network component then com-
putes non-linguistic shift vectors by learning nonlinear combinations
between visual and acoustic embeddings through an attentional gating
mechanism. The significance of this vector is to describe the impact
of non-linguistic context on text words. Finally, the non-linguistic
shift vector is integrated into the original word embeddings to com-
pute multimodal shifted word representations that dynamically capture
contextual changes in different non-linguistic contexts. The final multi-
modal representation can be passed to a word-level LSTM for encoding
and prediction through fully connected layers.

4.4.8. SWRM (Sentiment Word Aware Multimodal Refinement Model)
In the real world, since textual content in videos is generally rec-

ognized by automatic speech recognition (ASR) models, some key
emotional elements may be recognized as other words, resulting in a
sharp drop in the performance of even advanced models. To address
this problem, Wu et al. [29] developed three real-world datasets based
on the existing dataset CMU-MOSI [8], using three widely used ASR
APIs for text recognition, including SpeechBrain, IBM, and iFlytek. The
authors also proposed a Sentiment Word Aware Multimodal Refinement
Model (SWRM), which achieves good results on these datasets. The
proposed model consists of three modules for sentiment word position
detection, multimodal sentiment word refinement, and multimodal
feature fusion respectively.

First, the sentiment word position detection module is used to
obtain the most probable position of the sentiment words in the text.
Since ASR may recognize sentiment words as neutral words, instead
of sentiment word localization, the authors used the strong language
model BERT to generate candidate sentiment words. Then, the multi-
modal sentiment word refinement module is used to refine sentiment
word embeddings dynamically. The refinement process consists of two
parts, filtering and adding. During the filtering process, a non-linear
neural network called the multimodal gating network is applied to filter
out the useless information in the input word embeddings. After the fil-
tering process, a linear layer is used to extract useful information from
candidate sentiment words, which are added to the word embeddings
to produce a multimodal sentiment word attention network. Finally,
the refined embedding data is used as the text input to the multimodal
feature fusion module to predict sentiment labels.

4.5. Translation-based fusion

This category is a method of modeling the interaction between
modalities employing translation. Inspired by the success of sequence-
to-sequence (Seq2Seq) models in machine translation, researchers pro-
pose to convert one modality to another to capture more meaningful
relationships across modalities. Another option is to use a pre-trained
language model to capture word interactions by adjusting the structure
of the transformer encoder. Table 7 summarizes the advantages and
disadvantages of each model.

4.5.1. MCTN (Multimodal Cyclic Translation Network)
Inspired by the unsupervised representation learning of the Seq2Seq

model, Pham et al. [30] proposed a Multimodal Cyclic Translation Net-
work (MCTN) model to learn a robust joint multimodal representation
by transforming modalities. In addition to the forward transformations
from source to target modality, the authors also added a backward
transformation from predicted target to source modality to ensure that
the learned joint representation can capture the maximum information
from both modalities, which is named multimodal cyclic translations.

For the joint representation between the source modality and multi-
ple target modalities, a hierarchical model is also proposed. In the first
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layer, a defined multimodal cyclic translation learning is employed to
learn intermediate representations. After passing to the second layer,
the backward transformation is canceled and only the forward trans-
formation is used to obtain the final representation. Finally, the rep-
resentation is fed into an RNN classifier to produce predictions. The
advantage of MCTN is that once trained with multimodal data, only
the data from the source modality needs to be used at test time to infer
joint representations and labels. Therefore, MCTN is completely robust
to test time perturbations or missing information on other modalities.

4.5.2. MulT (Multimodal Transformer)
Tsai et al. [31] proposed a Multimodal Transformer (MulT), using

directional pairwise crossmodal attention to realize the interactions
between multimodal sequences across distinct time steps and latently
adapt streams from one modality to another. A 1D temporal con-
volutional layer is first used to provide each element in the input
sequence with sufficient knowledge of its neighbors. To carry time
information, the authors also add position embedding (PE) to the
sequence. The highlight of this paper is that a cross-modal trans-
former is proposed, which enables one modality to receive information
from another modality by interacting with cross-modal attention. Each
modality, interacts with the other two modalities, accepting low-level
external information to continuously update its sequence. Finally, a
self-attention transformer is used for cross-modal transformers with the
same target modality to collect temporal information, concatenating
the input to a fully connected layer for prediction.

4.5.3. MAG (Multimodal Adaptation Gate)
With the superior performance of transformer-based contextual rep-

resentations on downstream tasks, Rahman et al. [32] proposed a
method to efficiently fine-tune large pre-trained transformer models
for multimodal languages, termed Multimodal Adaptation Gate (MAG).
MAG can be seen as an add-on to BERT and XLNet, allowing these to
accept multimodal non-linguistic data during fine-tuning.

In the encoding layer, MAG accepts inputs from three modalities.
The language vector is connected with acoustic and visual information
respectively to form two bimodal factors. Furthermore, two gating
vectors are generated, which embody the acoustic and visual informa-
tion based on language. Multiplying the two gating vectors with their
respective modality vectors yields a non-verbal displacement vector.
In other words, MAG exploits the information of non-verbal behavior
to form a vector with trajectory and amplitude to add to the verbal
vector. This non-verbal displacement vector modifies the internal states
of BERT and XLNet during fine-tuning of the pre-trained model, and
finally obtains a multimodal vector. A unique feature of this method is
that the MAG component is merely an add-on to BERT or XLNet without
changing the original structure.

4.5.4. TCSP (Text-Centered Shared-Private)
Departing from previous works that treat the features of the three

modalities equally, Wu et al. [69] proposed a Text-centered Shared-
private framework (TCSP). This model takes the text modality as the
core and enhances the semantics of the text through the other two
modalities. The authors divide the contributions of visual and acoustic
modalities into shared semantics and private semantics. Shared seman-
tics refers to the information common to the three modalities. Although
it cannot provide additional information to text modalities, repeated
information can significantly enhance text semantics. Private semantics
are non-linguistic modality-specific semantics that can complement tex-
tual semantics to help detect the final sentiment more accurately. The
framework consists of a cross-modal prediction task and a sentiment
regression model.

Two cross-modal prediction models, namely text-to-visual and text-
to-acoustic models, are trained to explore shared and private semantics

from non-text modalities. Considering that shared semantics contain
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Table 7
Characteristics of translation-based fusion methods.

Methods Advantages Disadvantages

MCTN ∙ Multimodal cyclic translation
∙ The model learns increasingly discriminative joint representations with more input modalities
while maintaining robustness to missing or perturbed modalities
∙ Only data from the source modality need to be used at test time for final sentiment prediction

∙ Cyclic translation between modalities requires a lot of
training resources and time

MulT ∙ The cross-modal attention module fuses multimodal information by directly attending to
low-level features in other modalities
∙ Can be directly applied to unaligned multimodal streams

∙ When part of the language information is missing, the
model lacks continuous attention and generalization to the
target modality, and the overall performance is slightly lower

MAG ∙ Non-verbal displacement vector
∙ MAG makes no change to the original structure of BERT or XLNet, but acts as an attachment
to both models

∙ Both input-level concatenation and addition of modalities
perform poorly

TCSP ∙ Treat the textual modality as the core and use the other non-textual modalities to help enrich
the semantics of the textual modality
∙ Shared and private semantics
∙ Effectively fuse textual and non-textual features benefiting from unlabeled data

∙ The performance of cross-modal prediction model greatly
affects the effectiveness of regression model

ICDN ∙ The encoder of the traditional Transformer is improved so that it can receive the input of
multimodal information
∙ Modify the mapping attention to map the bimodal information to the target modality, so as
to obtain richer modality-related information
∙ Improve self-supervised unimodal label generation module (ULGM) and uses unimodal for
multi-task learning to supplement and generalize multimodal fusion

∙ After using Mapping Transformer, features containing rich
information of the original modality are still required to
further reduce modal differences

DEAN ∙ Deep emotional arousal network
∙ Model the sentiment congruence by introducing time-dependent interactions into the parallel
structure of Transformer
∙ Identify the difference between different modalities by embedding a multimodal gating
mechanism

∙ Time consumption of transformer-based model

AMOA ∙ The first to introduce the global acoustic features to enhance the learning of overall video
features
∙ By designing a cross-modal transformer (CMT) that integrates the three modalities in a
certain order, the modality added before can also provide information for the later processes
∙ Generalize to sentiment with more complex semantics, achieving SOTA performance on a
widely used sarcasm dataset

∙ Need to know the importance of each modality in advance
to determine the order of fusion
more transmembrane state information, words assigned higher atten-
tional weights are classified as shared. Since modal-private information
is difficult to predict via text modality, features with higher prediction
loss in non-linguistic modalities are considered private. After obtaining
shared semantics and private semantics, a sentiment regression model
is applied to fuse text features with those of the other two modalities.
The sentiment regression model is mainly composed of three parts:
shared module, private module, and regression layer. In the shared
module, a masked cross-modal attention network is proposed to lever-
age the shared information of non-linguistic modalities to enhance
the representation of words. Meanwhile, in the private module, the
private features are passed through the attention layer to produce
the final private representation. Finally, the obtained representation
is input to the regression layer, which is a two-layer network with
ReLU, to predict the sentiment score. It is worth mentioning that this
work provides a new method for multimodal sentiment analysis using
unlabeled data [69].

4.5.5. ICDN (Integrating Consistency and Difference Networks)
Inspired by the application of the Transformer [70] structure and

Mult [31] in the multimodal domain, Zhang et al. [33] proposed a
method known as Integrating Consistency and Difference Networks
(ICDN). Instead of a sequence-to-sequence structure, the model consists
of multiple mapping attention modules for deeper modality fusion
based on the low-level features of each modality. Firstly, ICDN uses
a Mapping Transformer (MT) to map the low-level features of the
remaining two modalities to a third modality, making up for the loss
caused by the missing parts of that modality. Unlike Mult, the MT mod-
ule abandons the decoder and improves the encoder to obtain richer
modality-related information using self-attention techniques. Second,
Transformers are used to extract modal features, improving long-range
dependencies between modalities and attention to contextual informa-
tion. Finally, the self-supervised method in SELF-MM [58] is improved
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to obtain unimodal sentiment labels, and multi-task learning guides the
final fusion of multimodal features.

4.5.6. DEAN (Deep Emotional Arousal Network)
Departing from most other models that focus on considering more

efficient fusion strategies, inspired by the emotional arousal model in
psychology, Zhang et al. [71] proposed a Deep Emotional Arousal Net-
work (DEAN) to simulate the whole process of human communication
at the multimodal input. DEAN consists of three components: a cross-
modal transformer, a multimodal BiLSTM system, and a multimodal
gating module, respectively simulating the functions of the perception
analysis system, cognitive comparator, and activation mechanism in
the psychological emotional arousal in humans. On the input side, the
cross-modal transformer explores the interaction between every two
modalities through an improved multi-head attention mechanism, that
is, DEAN contains a total of 6 cross-modal transformers. Afterward, the
authors adopted a multimodal BiLSTM system to extract the context-
related features of each modality through a Bidirectional LSTM network
and modeled the time series to simulate emotional coherence. The
final module is the Multimodal Gating Block, which implicitly performs
fusion between modalities by selecting the information to be output
according to the importance of the modalities. DEAN attempts to
provide a complete framework and an alternative thought that guides
the learning system along a human-like path to progressively acquire a
complex understanding of human emotions.

4.5.7. AMOA (Acoustic feature en-hanced Modal-Order-Aware network)
To cope with the problem that three modalities are equally treated

by existing methods and the global acoustic information is lost after
the video is divided into frames, Li et al. [34] proposed a global Acous-
tic feature en-hanced Modal-Order-Aware network (AMOA). After the
features of each modality are extracted, a Transformer encoder-based
Cross-Modal Transformer (CMT) is designed for two-stage fusion. In
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Table 8
Characteristics of feature space manipulation-based fusion methods.

Methods Advantages Disadvantages

ICCN ∙ Learn correlations between all three modalities via Deep Canonical Correlation Analysis
(DCCA)
∙ Based on the text, two outer-product matrices are built for representing the interactions
between text-video and between text-audio

∙ The dynamic intra-actions in each model and the
inter-actions between different modalities are for further
study
∙ There needs to be a trade-off between maximum
canonical correlation and optimal downstream task
performance

MISA ∙ Each modality is decomposed into modality-invariant and modality-specific features, so as to
learn its common and private attributes respectively
∙ Stress the importance of representation learning before fusion
∙ Effort made in exploring the feature space reduce the need for complex fusion mechanisms

∙ Not much contribution in exploring more efficient
fusion solutions

HyCon ∙ The first to leverage contrastive learning in a hybrid manner to learn cross-modal
embeddings
∙ Pair selection mechanism
∙ Inter-class and inter-sample relationships are explored for a more discriminative joint
embedding
∙ The designed loss function introduce no additional parameters, which reduces the possibility
of overfitting and improves the generalization ability

∙ Lack of exploring potential relationships within and
between modalities
∙ The model takes slightly longer to run than most
baselines
∙ Little attention has been paid to the design of new
fusion methods

HGraph-CL ∙ Hierarchical Graph Contrastive Learning (HGraph-CL) framework
∙ The construction of intra- and inter-modality graphs is explored to exploit potential sentiment
relationships within and across modalities
∙ Better generalizability, transferability, and robustness in learning sentiment cues compared
with pure class-driven methods

∙ Experimental results are sensitive to deleting/adding
ratio

HIS-MSA ∙ Adopt different self-supervised pre-training strategies to fully mine the unique knowledge of
the in-domain corpus
∙ A unimodal label generation module is used to jointly guide multimodal tasks and unimodal
tasks to balance independent and complementary information between the modalities
∙ Heterogeneous graphs are introduced in the modality fusion phase to efficiently fuse
information from multiple modalities

∙ Rely heavily on the quality of the parser
∙ There exists noise in the visual and audio features
learned by the model
the first stage, the text modality is the core, the acoustic modality is
integrated, and then the visual modality is added in the second stage.
One of the benefits of using CMT is that previously added modalities
can provide information for later. In this way, the textual features
are continuously enhanced while also reducing the noise in the visual
modality. Since the resulting multimodal features are composed of the
features of a single frame and lack overall acoustic information to
reflect the overall change in tone, the authors add a Global Acoustic
Feature (GAF). The GAF extracted with open SMILE is in a different
space from the multimodal fusion feature, so the authors use contrastive
learning to align the two features and concatenate them. Finally, the
contrastive loss and the classification loss are added together to guide
the model training, and a multilayer perceptron layer is used for
classification.

4.6. Feature space manipulation-based fusion

This type of fusion method focuses on mapping features into feature
space after feature extraction and learning the relationship between fea-
tures through a series of mathematical analyses or operations. Table 8
summarizes the advantages and disadvantages of each model.

4.6.1. ICCN (Interaction Canonical Correlation Network)
Sun et al. [35] proposed an Interaction Canonical Correlation Net-

work (ICCN) model to learn the correlations between all three modal-
ities through Deep Canonical Correlation Analysis (DCCA). Canonical
Correlation Analysis (CCA) is a well-known method to find the linear
subspace with the largest correlation between two inputs [72]. On
its basis, DCCA uses a pair of neural networks to learn nonlinear
transformations, which solves the limitation of considering only linear
transformations. After extracting audio and video through 1D convo-
lution and LSTM, the outer product operation is performed with the
text embedding. The resulting two representations are fed into a DCCA
consisting of two CNNs and CAA layers to learn useful features in
the outer product matrix. Finally, the output of DCCA is concatenated
with the original text sentence embedding as the final multimodal
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embedding for sentiment classification.
4.6.2. MISA (Modality-Invariant and -Specific Subspaces)
Complex fusion methods are easily challenged by morphological

gaps between different modalities. To solve this problem, Hazarika
et al. [36] proposed a new framework, MISA, which considers different
modal subspaces to improve the fusion effect. The framework can be
divided into modal representation learning and modal fusion, where the
former is the main contribution of the paper. After extracting the fea-
tures of the three modalities, each modality is projected to two different
subspaces. The first subspace is modality-invariant, and the distribution
similarity constraint is applied to minimize the heterogeneity gap and
learn their commonality. The second subspace is modality-specific and
learns feature information private to each modality. After projecting the
modalities into the corresponding subspace, a transformer-based self-
attention is used to concatenate all 6 transformed mode vectors to make
predictions. Despite the inclusion of simple feedforward layers, MISA’s
efforts to explore the feature space reduce the need for complex fusion
mechanisms.

4.6.3. HyCon (Hybrid Contrastive Learning)
Trapped by the gaps in cross-modal information, most previous

work has focused on exploring the interactions within and between
modalities, while ignoring the learning of inter-sample and inter-class
relationships. To address these issues, Mai et al. [37] proposed a
new framework, HyCon, to learn trimodal representations using hybrid
contrasts. After obtaining unimodal representations for each modal-
ity, the authors used three different contrastive learning models to
learn inter-modality interactions and inter-class relationships. Semi-
Contrastive Learning (SCL) only considers positive samples and learns
the interactions between different modalities of the same sample in an
unsupervised form. Intra-modality Contrastive Learning (IAMCL) and
Inter-modal Contrastive Learning (IEMCL) both operate in a supervised
manner; the former learns the intra-modality dynamics among differ-
ent samples, and the latter learns the inter-modality dynamics. Both
IAMCL and IEMCL explore inter-class relationships. Finally, various
fusion strategies (including simple ones such as concatenation) are

adopted to verify the effectiveness and generalizability of the model.
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The authors also introduced refinement terms, modality margins, and
pairing selection mechanisms to enhance the performance of the entire
system; details on these additions can be found in the article [37].

4.6.4. HGraph-CL (Hierarchical Graph Contrastive Learning)
Lin et al. [38] believe that existing work mainly focuses on fusing

different modal information through class-driven supervised learning
or multi-task learning, but this approach cannot understand complex
relationships within and across modalities. They proposed a novel
Hierarchical Graph Contrastive Learning (HGraph-CL) framework to
address this difficulty, where highly correlated modal representations
are explicitly linked. For intra-modal dynamics, a unimodal graph is
constructed for each modality, where the text modality graph uses the
grammatical dependency tree of the sentence, and the other two modal-
ities exploit their continuous sequential relationships. Thus, combined
with three modality-specific views, an inter-modal view is constructed
for each multimodal instance by full connection to capture the potential
dispersion of emotions. The authors then employ a graph attention
network to model semantic relationships by assigning different weights
to different nodes in the neighborhood. Following that, two forms of
supervised contrastive learning strategies are applied to the intra- and
inter-modal levels. One is to utilize sentiment labels as supervision
signals and perform a fully supervised loss to capture the similarity of
examples within a class as well as the contrast between classes. The
other is a self-supervised graph contrastive learning strategy based on
graph augmentation, which explores a more suitable graph structure by
adding or removing edges. This hierarchical graph contrastive learning
strategy enhances the learning of graph representations at both the
data level and label level. Compared with pure class-driven methods,
it has better generalization, transferability, and robustness in learning
sentiment cues. More details can be found in the paper if the reader is
interested.

4.6.5. HIS-MSA (Heterogeneous graph convolution based on in-domain
self-supervision for multimodal sentiment analysis)

The inability to make full use of domain knowledge and the lack
of effective integration methods have been the difficulties and key
points of multimodal sentiment analysis, so to solve this problem, Zeng
et al. [73] proposed a heterogeneous graph convolution based on in-
domain self-supervision for multimodal sentiment analysis (HIS-MSA).
First of all, to make the feature encoder better used for embedding text
modality, based on the original BERT, professional knowledge is added,
and different self-supervised training strategies are used for the second
pre-training to obtain domain awareness. In the fusion stage, the au-
thors take the syntactic dependency tree of text modality as the core to
construct a heterogeneous graph, to integrate the features of the other
two modalities. Heterogeneous graph convolutional networks can learn
complementary information among multiple modalities interactively
by driving heterogeneous graphs. Finally, inspired by previous work,
multimodal tasks and unimodal tasks are jointly guided by a unimodal
label generation module to balance independent and complementary
information between modalities.

4.7. Contextual-based fusion

Previous methods treat each utterance as an independent entity and
ignore the dependencies between utterances in the video. Contextual-
based fusion achieves better results by considering the connections
between other utterances in the context and the target utterance.
Among them, recurrent neural network-based models are generally
used to incorporate contextual information. Table 9 summarizes the
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advantages and disadvantages of each model.
4.7.1. BC-LSTM (Bi-directional Contextual LSTM)
Given some works that treat utterances as independent entities

and ignore the interrelations between utterances, Poria et al. [39]
proposed a BC-LSTM model to capture the contextual information of
utterances in the same video environment. Unimodal features that do
not contain contextual information were first extracted by different
feature extractors, then input into an LSTM network. The authors
replaced the regular LSTM with a bi-directional LSTM so that an utter-
ance could gain information from preceding and following utterances,
naming their system bi-directional contextual LSTM (BC-LSTM) for this
reason. Finally, the obtained unimodal features containing contextual
information were concatenated and passed to a similar independent
BC-LSTM for training, and sentiment classification results were output.

4.7.2. CHFusion (Context-aware Hierarchical Fusion)
Majumder et al. [74] proposed a Context-aware Hierarchical Fusion

(CHFusion) model, which uses a hierarchical structure to continuously
fuse multi-modality information and update the context information
after each layer fusion. First, the unimodal features of each utter-
ance of the three modalities are obtained. Then, a GRU is used to
extract context-aware discourse features. By combining the unimodal
features containing contextual information in pairs through a fully
connected layer, a bimodal feature vector is formed after fusion. As
in the unimodal case, the GRU is also used to sense context. Finally,
three bimodal fusion vectors are combined into a trimodal vector
through a fully connected layer, and a GRU is used to convey contextual
information. The output of the model is generated from a softmax layer.

4.7.3. MMMU-BA (Multi-modal Multi-utterance-Bi-Modal Attention)
Ghosal et al. [40] proposed a Multi-Modal Multi-Utterance-Bi-Modal

Attention (MMMU-BA) framework to leverage contextual information
for utterance-level sentiment prediction. Unlike previous methods that
simply apply attention to contextual utterances for classification, the
authors focus on contextual utterances by computing the correlation
between target utterance patterns and contextual utterances. After
inputting the continuous utterances of three modalities into three inde-
pendent bi-directional gated recurrent units (Bi-GRU [75]) and passing
through a dense layer, three matrices containing the contextual infor-
mation of specific modal utterances are obtained. Multimodal attention
is applied to the output matrix of the dense layer to learn the multi-
modal connections between utterances. The ‘‘bi-modal attention’’ as-
pect of the framework lies in its application of an attention mechanism
to paired modal representations, resulting in three sets of interactions,
namely visual-text, text-acoustic, and acoustic-visual. Finally, the pair-
wise modal attention and the unimodal representation are concatenated
and passed to the softmax layer for sentiment classification.

4.7.4. CIA (Context-aware Interactive Attention)
Chauhan et al. [76] proposed an end-to-end Context-aware Inter-

active Attention (CIA) based recurrent neural network for sentiment
analysis. The authors believe that the encoded representation between
different modalities can learn their interactions, so the interaction
between modalities is learned through an autoencoder-like structure
called the inter-modal interactive module (IIM). IIM encodes a feature
representation for one modality (e.g., text) and aims to decode it
into a feature representation of another modality (e.g., vision). Thus,
a total of 6 modal pairs are generated. The text-acoustic pairs and
the acoustic-text pairs differ because the encoder contains two error
gradients, one from the output of IIM l1, and the other from the task-
specific label l2. Afterward, the sequential patterns of utterances are
extracted by a bi-directional gated recurrent unit (Bi-GRU), and for
each pair of modality interactions (e.g., text-acoustic and acoustic-text),
an averaging operation is used to reduce the presence of dimension.

In addition, the raw data of the three modalities are also processed
by a separate Bi-GRU, and the outputs are paired and then transmitted

to a fully connected layer to extract the Bimodal Interaction (BI). The
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Table 9
Characteristics of contextual-based fusion methods.

Methods Advantages Disadvantages

BC-LSTM ∙ A LSTM-based framework is developed to extract contextual utterance-level features
∙ The model preserves the sequential order of utterances and enables consecutive utterances to
share information

∙ The importance of each utterance and its specific
contribution to each modality is not considered

CHFusion ∙ The hierarchical fusion structure makes every pair of modalities interact and combine into a
trimodal vector, which captures the interrelationship between modalities
∙ Each layer uses RNN to extract context-aware utterance features

∙ The quality of unimodal features could be improved
∙ Simple network architecture

MMMU-BA ∙ The first work that attempts to employ multi-modal attention block (exploiting neighboring
utterances) for sentiment prediction
∙ Focus on contextual utterances by computing correlations among the modalities of the target
utterance and the context utterances, thereby helping to distinguish which modalities of
relevant contextual utterances are more important
∙ Apply attention to multi-modal multi-utterance representations in an attempt to learn the
contributing features

∙ When experimenting on the MOSEI dataset, the
performance of the negative category is poor

CIA ∙ An end-to-end Context-aware Interactive Attention (CIA) based recurrent neural network that
identifies and assigns the weights to the neighboring utterances based on their contributing
features
∙ Learn the inter-modal interaction among the participating modalities through an auto-encoder
mechanism
∙ Two affect analysis tasks were performed on five standard multi-modal affect analysis datasets

∙ Current work only applies to single-party utterances
Table 10
Characteristics of quantum-based fusion methods.

Methods Advantages Drawbacks

QMSA ∙ The first to apply Quantum Theory (QT) to sentiment analysis
∙ Images and text are encapsulated into density matrices, which can encode more semantic
information and fill the ‘‘semantic gap’’
∙ The multimodal decision fusion process is analogous to a double-slit experiment, and a
Quantum Interference inspired Multimodal Decision Fusion (QIMF) strategy is proposed

∙ The computation time used for training and classification is
longer than the use of other baselines
∙ The change of cos 𝜃 has a great influence on the
experimental results

QMN ∙ Quantum probability theory in the LSTM architecture is used to model both intra- and
inter-utterance interaction dynamics
∙ A quantum measurement-inspired strong–weak influence model is proposed to make
better inferences about social influence among speakers
∙ A quantum interference-inspired multimodal decision fusion method is proposed to model
decision correlations between different modalities

∙ The model is largely dependent on the density matrix
representation, how to further accurately capture the
interactions among speakers and naturally incorporate them
into an end-to-end framework is difficult
∙ Experiments are performed on emotion recognition
datasets, not sentiment analysis datasets

QMF ∙ The interaction within a single modality and the interaction across modalities are
formulated with superposition and entanglement respectively at different stages
∙ Sentiment decisions are made via the concept of quantum measurement

∙ The quality of the extracted visual and acoustic features is
not high
∙ Inconsistencies with quantum theory
two representations of each pair of modalities are transferred to a
context-aware attention module (CAM) to extract the correspondences
of adjacent utterances. The attention module helps the network focus
on the contribution features by weighting the current and adjacent
utterances in the video. Finally, the output of CAM is concatenated and
passed to the output layer for prediction.

4.8. Quantum-based fusion

Existing methods are mainly based on neural networks that model
multimodal interactions implicitly and incomprehensibly. Neural archi-
tectures allow models to learn multimodal interactions from large-scale
data in an end-to-end manner, often resulting in satisfactory accuracy.
However, multimodal interactions are implicitly encoded by these mod-
els, working like a black box with few numerical constraints, which
increases the difficulty of understanding multimodal interactions in
human language. As these models bring significant performance gains,
researchers are looking for ways to understand the model to know
if we can trust it and deploy it in real works [77], or if it includes
privacy or security issues [78]. Thus, they began to study quantum-
based multimodal fusion methods. Table 10 summarizes the advantages
and disadvantages of each model.

4.8.1. QMSA (Quantum-inspired Multimodal Sentiment Analysis)
Zhang et al. [79] proposed a Quantum-inspired Multimodal Sen-
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timent Analysis (QMSA) framework, which is the first work to apply
Quantum Theory (QT) to sentiment analysis. The framework consists
of a Quantum-inspired Multimodal Representation (QMR) model and
a Quantum Interference-inspired Multimodal Decision Fusion (QIMF)
strategy. In the first part, the QMR model, based on the Quantum
Language Model (QLM), represents texts and images through respective
density matrices. For images, pixels are extracted to construct visual
words, which are packed into a density matrix after vector space map-
ping. This density matrix describes the probability distribution of visual
words in the image. A similar approach is used for text. Compared
with traditional vector-based representation models, QMR models can
encode more semantic relations. In the second part, the authors apply
QIMF to fuse decision-making. The QIMF strategy is inspired by the
double-slit experiment, where the sentiment label of multimodal data
is analogous to a photon. The sentiment of text and images is seen as
two slits, and each sentiment score is a location on the detection screen.

4.8.2. QMN (Quantum-like Multimodal Networks)
Building on previous work, Zhang et al. [80] proposed a new

framework for multimodal sentiment analysis, termed quantum-like
multimodal network (QMN), leveraging the formalism of quantum
theory and the LSTM architecture. First, based on QMSA [79], QMN
develops a density matrix-based convolutional neural network (DM-
CNN) to represent the text and images of all utterances in a video and
serve as the input of the whole model. Second, inspired by quantum
measurement theory, a strong–weak influence model is introduced.

This structure measures the influence relationship between speakers
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and acts as a complement to the output gate of the LSTM unit. Thus,
textual and visual features can be input into two LSTMs respectively,
and local sentiment analysis results can be obtained. Finally, a QIMF
method is designed to derive the final decision based on local results.
This part is similar to the fusion decision in QMSA.

4.8.3. QMF(Quantum-inspired Multimodal Fusion)
Li et al. [81] proposed a fundamentally new framework to address

the shortcomings of neural networks inspired by quantum theory,
which incorporates a principled approach to modeling complex in-
teractions and correlations. In this quantum-inspired framework, the
mode-specific dynamics and interactions between different modes are
represented by superposition and entanglement at different stages,
respectively. This framework explains advancing the understanding of
multimodal interactions from both a quantum and a classical perspec-
tive.

4.9. Summary of different fusion methods

Early multimodal sentiment analysis methods are mainly divided
into early fusion and late fusion. These two types of fusion are relatively
simple, without a very complicated fusion framework. Early fusion is
also called feature-level fusion. At the input end, the feature vectors
of the three modalities are spliced together as the input features of
the entire model. The feature is transmitted to a subsequent classifier
for sentiment classification, which can be an SVM or some other deep
learning network. The benefit of this form of fusion is that it only
needs to consider how to design classifiers more efficiently, without any
specific model design. However, there is an obvious drawback, that is,
premature fusion of features from different modalities leads to a lack of
detailed modeling of specific view dynamics, which in turn affects the
modeling of cross-view dynamics and leads to overfitting. The process
of late fusion can be said to be just the opposite. First, sentiment
predictions are made for each modality, and then the results based on
these predictions are integrated into the final result through different
decision-making methods, so it can also be called decision-level fusion.
These decision methods can be average, majority, weighted, or other
statistical strategies. Thus, this form of fusion is strong in modeling
view-specific dynamics. Thanks to the integration of its modules, it can
adapt well to changes in the number of modalities. However, the result
is that dynamic interactions across views cannot be fully explored, and
low-level interactions between different modalities are ignored.

Tensor-based methods take advantage of tensor representation and
interaction. After feature representation for each modality, the tensor
product is computed. Tensors can capture important higher-order inter-
actions across time, feature dimensions, and multiple modalities during
the mapping process, and have strong capabilities in exploring cross-
modal dynamics. However, the tensor-based fusion method requires a
lot of computing resources to calculate the outer dot product, result-
ing in the exponential growth of computational complexity. There is
also no fine-grained word-level interaction during fusion. Therefore,
methods under this framework mainly focus on reducing the computa-
tional complexity and resource consumption of fusion to enable better
generalization.

Since the above three types of fusion methods lack finer-grained
interactions, we classify them into the category of utterance-level fu-
sion methods. The three categories of methods summarized next pay
more attention to the fine-grained interactions of modalities, which
we describe as fine-grained fusion methods, including word-level fu-
sion methods, translation-based fusion methods, and FSM-based fusion
methods.

Word-level fusion method models the interaction relationship at
each time step and extracts useful information through an attention
mechanism. Therefore, the framework generally consists of a temporal
modeling module and an attention module. The temporal modeling
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Fig. 3. Applications of multimodal sentiment analysis.

module includes temporal networks such as LSTM and 1D tempo-
ral CNN. This module focuses on exploring modality-specific dynam-
ics. The attention module employs the attention mechanism and its
variants to model important information between modalities to mine
cross-modal interactions. Word-level fusion methods effectively explore
time-dependent interactions, but combining unimodal features with
timestamps would miss an explicit and separate component to handle
intra-modal and inter-modal interactions.

Translation-based fusion method is inspired by the Seq2Seq model
in the field of machine translation. By translating one modality to
another, more meaningful relationships across modalities are mined.
The transformation process can complement the missing information of
the modality, thereby enhancing the meaning. However, the translation
based on the correlation of individual word representations will largely
ignore the word order information. Another form is to capture word
interactions by adjusting the structure of the pre-trained language
model or adding additional components.

The full name of the FSM-based fusion is Feature Space
Manipulation-based fusion. Through a series of mathematical analyses
or learning models, it focuses on exploring the relationship between
features in the feature space. The advantage of this fusion method is
that it has a strong ability to explore the interaction between features,
but the model does not consider an effective fusion strategy.

Contextual-based fusion can also be called multi-utterance fusion,
because it not only considers the target utterance but also combines
other utterances in the context. Generally, models based on recurrent
neural networks are used to focus on contextual information. The target
utterance and other utterances in the context form a context sequence,
which can help judge the polarity of the target utterance more effec-
tively. However, insufficient consideration is given to utterance-level
sentiment analysis, and the extraction of contextual relations can easily
lead to overfitting.

Quantum-based fusion approaches differ from existing neural net-
works in modeling multimodal interactions implicitly and incompre-
hensibly. Modeling multimodal interactions in quantum-inspired ways
such as superposition, entanglement, and interference can resolve the
paradoxes of classical probability theory in modeling human cognition
while having better interpretability. However, there are many para-
doxes in quantum theory, and the analogies in sentiment analysis do
not quite line up.

5. Applications of multimodal sentiment analysis

Sentiment analysis, including multimodal sentiment analysis, is
commonly used in business to summarize customers’ opinions about
a product or brand, as is multimodal sentiment analysis. Using au-
tomated sentiment analysis, we can obtain feedback from customers
in a low-cost way. Previously, early-stage companies or organizations



Information Fusion 95 (2023) 306–325L. Zhu et al.
typically assessed customer opinions through survey panels, a relatively
tedious and costly task. With the development of social media and
the trend of people keen to post opinion videos and comments on,
e.g., YouTube, automatic sentiment analysis can become a low-cost job.
Multimodal sentiment analysis has also derived a series of applications
and fields [82–84]. Following are some applications of multimodal
sentiment analysis as shown in Fig. 3.

5.1. Business analysis

Multimodal sentiment analysis has many applications in the field
of business intelligence. The most typical application is to analyze
customer evaluations of products or brands. However, these studies are
not only available to product producers; consumers can also use them
to judge the quality of pre-order items and make more informed deci-
sions [85]. For example, companies can leverage multimodal sentiment
analysis data to improve products, investigate customer feedback and
develop innovative marketing strategies [86]. Multimodal sentiment
analysis can help customers choose better products by defining key-
words for specific topics and training a sentiment analysis framework
that can identify and analyze only the necessary information [87].
In addition, multimodal sentiment analysis can be applied to judge
potential competitors and compare marketing methods, and obtain
information on major consumers through user portraits [88] and other
methods.

5.2. Predictions and trend analytics

Tracking public opinion through sentiment analysis can help pre-
dict some market scenarios. For example, analyzing video reviews of
movies provides an opportunity to predict the box office performance
of movies. In [89], the authors used Weka’s KMeans clustering tool on
Twitter, YouTube, and the IMDB movie database to generate movie box
office predictions. The volatility and uncertainty of the stock market
make stock market forecasting a daunting task, but by analyzing all
the news about the stock market, the overall polarity of a particular
company can be determined, thereby predicting stock price trends.
Xing et al. [90] proposed such an analysis in their survey, associating
positive news with an upward trend and negative news with a down-
ward trend. Ma et al. [91] proposed a novel Multi-source Aggregated
Classification (MAC) method to predict stock price movements by
combining numerical characteristics and market-driven news sentiment
of target stocks, as well as news sentiment of related stocks.

5.3. Human–machine interactions

The work of Langlet et al. [92] suggests that humans are likely
to find an Embodied Conversational Agent (ECA) more likable if the
user and the ECA share a common view of an entity. The field of
human–machine interaction is also a large area of applied sentiment
analysis. During the interaction between the avatars represented by
ECA and the user, the management of the sentimental component of the
dialogue is crucial. For different users, sentiment analysis can extract
expressions of like or dislike. In this way, the trained ECA can better
fit the user’s psychology and provide better service effects. ECAs have
found their way into many different applications, from online education
to customer service.

5.4. Multimedia analysis

Multimedia analysis is a new field of development for sentiment
analysis. The work of Ellis et al. [93] builds a system using multimodal
sentiment analysis that can automatically analyze broadcast video news
and create summaries of TV programs. Multimodal sentiment analysis
techniques can also be used to identify politically persuasive content.
Siddiquie et al. [94] proposed a solution to detect politically persuasive
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Fig. 4. Challenges of multimodal sentiment analysis.

videos posted on social media and develop methods to predict and
analyze comment reaction sentiment. The existence of multimodal
sentiment analysis makes it possible to mine the opinions expressed by
countless broadcast TV channels or online channels on the Internet.

5.5. Recommender systems

Many applications will give corresponding recommendations based
on the user’s historical search experience. For example, Amazon uses
recommendation systems to recommend products on the homepage
for customers, YouTube recommends related videos to play next on
autoplay, and Facebook recommends people and web pages of potential
interest. If a user searches for a specific product, that app will be
suggested in future results. Dang et al. [95] proposed that incorpo-
rating sentiment analysis into recommender systems can significantly
improve recommendation quality, especially when only sparse data are
available.

6. Challenges

Combining information from different modalities is a challenging
task, and we need to decide which modality holds more weight. It
is also very important to reduce noise data between heterogeneous
input data, which necessitates the design of better fusion methods and
models. Apart from this, there are some other challenges in the field
of multimodal sentiment analysis, which are introduced in this section
and shown in Fig. 4.

6.1. Domain dependence

Most of the current sentiment analysis models are data-driven, so
the model only learns the knowledge contained in the specific do-
main data. When a model trained in a specific domain is transferred
to other unrelated domains, its performance will often drop signifi-
cantly. Solving the domain-dependent problem requires designing a
domain-dependence sentiment analysis system, for example, adapting
a model trained on sentiment analysis in product reviews to ana-
lyze Weibo posts. Researchers have proposed many possible solutions,
among which the prompt-based approach is a promising research direc-
tion. Pre-trained language models (PLMs) are trained with non-domain-
specific texts, and adding prompts can help adapt to different domains.
Mao et al. conducted a systematic empirical study of prompt-based
sentiment analysis and emotion detection to investigate the bias of
PLMs to affective computing [96].
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6.2. Figurative languages

Analyzing figurative language including ambiguity, irony, and
metaphor remains an inaccurate task in the field of multimodal sen-
timent analysis. Ambiguity and irony pose a major challenge to sen-
timent analysis. For example, comments ostensibly praising an object
may be intended to convey a negative emotion; however, traditional
sentiment analysis methods often misinterpret these expressions, judg-
ing them as positive. Many methods have been proposed to detect irony
in language [97–99]. However, this problem is far from resolved, as
many factors can affect irony, such as tone, situation, background in-
formation, etc., and humor is so culturally specific that it is challenging
for machines to understand unique (and often very specific) cultural
allusions. In the study of Poria et al. [100], it was proposed that by
incorporating voice and facial expressions into multimodal sentiment
analysis, its success rate in recognizing ironic comments could be im-
proved. In addition, machine-based sentiment analysis results can only
be based on external expressions of emotions, but cannot determine
summative information about the thoughts expressed by an individual.
Failure to recognize metaphors in sentences can also have disastrous
effects on the accuracy of sentiment analysis. Because metaphors are
often expressed differently from the conventional meaning of words, it
may lead to the opposite state of the machine’s judgment of sentiment.
In the article [101], Mao et al. proposed a metaphor processing model
called MetaPro, which can identify metaphors in sentences at the
token level, paraphrasing the identified metaphors into their literal
counterparts, and explain metaphorical multi-word expressions.

6.3. Dataset quality

A prominent data source for multimodal sentiment analysis is mul-
timedia content on social media. Social media is a rich data repository
that provides us with a sizable amount of data. However, the recorded
material varies in quality and context, and the data is limited to
statistics on specific groups of people on the Internet. Since this data
is publicly available, it is easy to crowdsource tagging. Another source
of data is private data from lab records, but this limits the tedious task
of labeling to those authorized to access the data. Thus, in addition
to limitations on the amount of data collected, the ability to tag large
amounts of data is also limited. Grosman et al. proposed a new web-
based text annotation tool ERAS. In addition to realizing the main
functions of mainstream annotation systems, it also integrates a series
of mechanisms to improve the annotation process and the quality
of the annotation dataset itself, such as random document selection,
Re-annotate stages, and warm-up annotations [102].

6.4. Ethics

Sentiment is a private state, and mining people’s private states
can raise ethical questions. Machines have incredible potential for
understanding people’s opinions and attitudes, but their use also raises
questions about privacy. Sentiment analysis, as a data-driven technique,
may introduce bias in decisions or higher-level analysis [7]. For exam-
ple, if more Black men expressed strong opinions on Twitter, companies
might pay more attention to their attitudes, since machine learning
tools often treat data agnostically [103]. In addition, automated sen-
timent analysis could also be a tool to limit freedom of speech. What
people say on social networks about policy opposition, partisan choices,
etc. could be identified by sentiment analysis and censored at scale by
an oppressive regime [104]. Other ethical issues that accompany data
acquisition and annotation, such as evaluation in the development and
long-term use of real-life recognition engines, are rarely explored. An
experiment in [105] illustrates that the decision on the material used
to stimulate or induce emotion may be critical, as certain materials
or ways of eliciting responses may not be suitable for all participants
in a database collection. For example, showing participants extreme
violence may have a strong emotion-inducing effect, but may not be
appropriate in many situations.
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6.5. Spoken language

Another challenge of multimodal sentiment analysis is to effectively
explore the intramodal dynamics of a specific modality. Since multi-
modal sentiment analysis is performed on spoken language, intramodal
dynamic analysis of language is particularly challenging. A verbal
opinion such as ‘‘I think it was alright . . . Hmmm . . . let me think . . .
yeah . . . no . . . ok yeah’’ rarely happens in the written word. That is to
say, this kind of the unstable verbal point of view is different from the
rigorous written expression with good grammatical structure, but will
be mixed with many habits of individual oral expression statements,
and some meaningless modal particles will lead to proper language
Structure is often overlooked, complicating sentiment analysis. Zhang
et al. proposed to employ a deep reinforcement learning mechanism
to select effective sentiment-relevant words and completely remove
invalid words for each modality [106].

6.6. Computational cost

In order to attain higher accuracy and better results, we need to
increase the size of the dataset and design a more efficient model [85].
However, the complexity of the model will lead to an exponential
increase in the computational cost of training it. On the one hand,
high-end GPU equipment is required to train a model with a huge
corpus. On the other hand, high-complexity models have difficulty
matching some specific scenarios. Traditional models such as SVM
and NB are not computationally expensive, but the corresponding
results are not good. Conversely, today’s popular neural networks
and attention models are computationally expensive. As a result, re-
searchers will need to devise new models to balance performance
and efficiency. For example, Han et al. proposed a novel encoder
combining a hierarchical attention mechanism and feed-forward neural
network to detect depressed individuals, which uses fewer training
parameters than classical encoders [107]. Arjmand et al. proposed a
transformer-based speech-prefixed language model with a lightweight
attentive aggregation module to generate efficient spatial encoding. The
model can achieve the same level of performance as taking a long
time to retrain the Transformer without training a full Transformer
model [108].

7. Conclusion and future work

This paper reviews recent advances in the field of multimodal
sentiment analysis. We discuss the most popular datasets and feature
extraction methods in the field. Recently published and cited articles
are categorized and summarized according to the fusion method. The
article further discusses available applications and the challenges faced
by existing methods. Our review of the existing literature shows that
multimodal sentiment analysis is a promising approach to leverage
complementary information channels for sentiment analysis and often
outperforms unimodal approaches. It also has the potential to enhance
other tools that currently benefit from unimodal sentiment analysis,
such as entity recognition and subjectivity analysis. We hope that this
review will encourage further interdisciplinary efforts in this area.

An area worth exploring for future work is understanding sentiment
in conversations. In a conversation, the sentiment one person expresses
affects the others. Related work has demonstrated that discourse con-
text is helpful for understanding human language, and if multimodal
systems can simulate human sentimental dependencies, this will lead
to significant progress in multimodal sentiment research. Further work
is also needed to focus on making models language-independent to be

able to generalize to any language in prediction tasks.
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