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a b s t r a c t

In real-world intelligent transportation systems, the spatiotemporal traffic data collected from sensors
often exhibit missing or corrupted data, significantly hindering the development of traffic data
research. Missing data imputation is a classic research topic that encompasses a wide range of methods.
However, these methods are typically underdeveloped in two aspects: the dynamic spatial dependen-
cies of the road network over time, and the information extraction and utilization of diverse data. In
this study, we design a novel deep learning architecture – Dynamic Graph Convolutional Recurrent
Imputation Network (DGCRIN) – as a tool to impute missing traffic data. The DGCRIN employs a graph
generator and dynamic graph convolutional gated recurrent unit (DGCGRU) to perform fine-grained
modeling of the dynamic spatiotemporal dependencies of road network. Additionally, an auxiliary
GRU learns the missing pattern information of the data, and a fusion layer with a decay mechanism
is introduced to fuse a diverse range of information. This architecture enables the DGCRIN to be
highly adaptable to complex scenarios involving missing data. Extensive experiments on two datasets
demonstrate the superiority of DGCRIN over multiple baseline models.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Spatiotemporal traffic data collected from the real world via
ensor devices are essential and fundamental for traffic research
nd applications [1]. By analyzing and mining traffic data, re-
earchers can address a wide range of problems, including traffic
peed prediction [2], traffic pattern recognition [3], and traffic
ata generation [4]. However, owing to the inherent unpre-
ictability of the data collection and storage processes, the col-
ected traffic information frequently contains missing data, which
egrades model performance for downstream tasks if not han-
led properly. Therefore, it is necessary to perform imputation
arefully on spatiotemporal traffic data.
Generally, the essence of traffic data imputation is to produc-

ively extract effective latent information, such as temporal corre-
ations and spatial dependencies, from observed data to estimate
he missing data. A wide range of methods have been developed
o achieve this goal. Early approaches attempted to directly utilize
tatistical features, such as zeros, historical averages [5], and
ast observations [6], to fill in or simply eliminate the gaps in
ata. These rudimentary methods consider solely a site’s own
istorical data, whereas a more effective approach is to combine
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G. Shen).
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950-7051/© 2022 Elsevier B.V. All rights reserved.
information from multiple sites. A typical KNN-based imputation
method estimated missing data by averaging the known values
of the k neighbors. Recently, matrix- and tensor-based decompo-
sition techniques [7–9] have exhibited great potential as tools to
solve traffic data imputation problems. However, these methods
rely on a global low rank while ignoring local spatiotemporal
consistency. Therefore, these models may have certain limitations
in capturing globally complex spatiotemporal dependencies. In
contrast, deep learning-based approaches have exhibited extraor-
dinary nonlinear modeling capabilities for various tasks [10–15].
Recent studies have attempted to use neural networks (NN), such
as recurrent neural networks (RNN) [16], convolutional neural
networks (CNN) [17], and graph neural networks (GNN) [18],
to handle data imputation tasks. Among them, the GNN-based
models are highly effective in capturing spatial dependencies
among irregular road networks than other methods. Although
these methods have achieved some success in addressing the
issue of missing data, two important research gaps remain.

Dynamic spatial dependencies: Most existing GNN-based
methods model spatial correlations via predefined static graph
structures based on geographic distance or road connectivity.
Consequently, these methods maintain a constant graphical struc-
ture over time. However, traffic data often exhibit strong dynamic
correlations in the spatiotemporal dimension, which may not be
fully modeled by a static graph structure. Several recent studies
have proposed the construction of dynamic graph structures to

https://doi.org/10.1016/j.knosys.2022.110188
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apture the dynamic dependencies of traffic data, and achieved
romising performance in traffic prediction tasks [19–21]. How-
ver, this issue is rarely considered in the context of traffic data
mputation. As a result, the construction of a dynamic graph that
odels dynamic dependencies, and provides more accurate and
ffective inference information for data reconstruction, remains a
hallenge.
Various complex temporal information: Traffic data are es-

entially time-series data collected through various physical de-
ices at regular or irregular time intervals. In an environment
rone to missing data, a variety of time-series datasets can be
btained from different perspectives. For example, according to
he missing position and data collection timestamp, a masking
atrix dataset and a time-lag matrix dataset can be generated.
he former indicates the original data states that includes missing
atterns, and the latter helps in studying the contributions of
bservations to the missing value estimates [22]. Both approaches
re beneficial for the imputation task. Nevertheless, many prior
tudies [1,23,24] on the imputation of traffic data have neglected
he analysis and utilization of such datasets. Therefore, the ex-
raction and fusion of information from diverse and complex
emporal data warrant further examination.

To address the aforementioned issues, a novel spatiotempo-
al deep learning approach for traffic data imputation called
ynamic Graph Convolutional Recurrent Imputation Networks
DGCRIN) is proposed in this study. A graph generator was de-
eloped to model dynamic spatial correlations and a dynamic
raph convolutional gated recurrent unit (DGCGRU) was used
o capture spatiotemporal dependencies. Furthermore, to extract
ore useful information from different types of data, we em-
loyed an auxiliary gated recurrent unit (GRU) to model the
issing patterns of masking data, and then introduced a fu-
ion layer with a decay mechanism to fuse information from
isparate data. The missing values of different road segments
t each timestamp are imputed in a bidirectional process us-
ng the spatial dependencies and temporal correlations learned
rom historical observations. To evaluate the effectiveness of the
roposed model, we conducted experiments on two real-world
raffic datasets, demonstrating the superior performance of our
ethod over that of existing approaches. In addition, correspond-

ng hyperparameter sensitivity and ablation experiments were
lso carried out.
Our main contributions can be summarized as follows:

• We propose a novel traffic data imputation framework to
infer missing values in the spatiotemporal input data. The
model can effectively model the dynamic spatiotemporal
characteristics of incomplete traffic data by considering the
road network’s dynamics and diverse temporal information
including data missing patterns and observation slot, to
achieve more accurate estimation.

• We propose a dynamic graph generation technique to per-
form fine-grained modeling of the spatial correlations be-
tween road network nodes with incomplete traffic data
via using the recurrent generated imputation and historical
information.

• We demonstrate the capabilities and advantages of the pro-
posed model by applying it to two real-world traffic datasets
under three types of missing patterns. Compared with the
baselines, our model significantly reduced the imputation
error while achieving a higher imputation accuracy.

The remainder of this paper is organized as follows. In
ection 2, we first review existing studies pertaining to traffic
ata imputation by category. The imputation problem is formu-
ated in Section 3, and the methodology is described in Section 4.
he experiments conducted within this study are presented in

ection 5. Finally, we conclude the paper in Section 6. c

2

. Related work

This section provides a detailed review of existing studies
elated to traffic data imputation. We classified the literature
mong three categories: RNN-based, GAN-based, and GNN-based
ethods.

.1. RNN-based methods

Traffic data represents sequential data collected over time.
NNs are generally effective in handling sequence data [25] by
aintaining chain-like structures and special gate mechanisms.
ccordingly, many RNN-based imputation methods have been
roposed. The use of a vanilla RNN network, such as a GRU
r long short-term memory (LSTM), represents the most naive
pproach to imputation [26]. However, such an approach gener-
lly yields suboptimal performance because the model initially
ills in missing data with predefined values, such as zero or a
istorical average, causing it to learn biased parameters [27]. To
mprove network robustness and enable the capability to handle
issing data, [28,29] proposed novel LSTM-based network struc-

ures. In [28], the masking vector was introduced directly into an
rdinary LSTM structure to aid in modeling the missing patterns.
ased on this, [29] implemented an imputation unit inside the
STM structure, wherein the missing values in the current time
tep were filled in by the values inferred from the preceding
ell and hidden states. Another method matches the attention
echanism with an RNN variant [30]. Although these methods
re somewhat expressive, they ignore the spatial dependencies
mong traffic data.

.2. GAN-based methods

With the recent growth of research in this field, deep gen-
ration-based imputation models represented by generative
dversarial networks (GANs) [31] have received increasing at-
ention. A GAN learns the real distribution of input data via
onfrontational training between two neural networks – a gen-
rator (G) and discriminator (D) – to generate synthetic data. The
irst application of a GAN to the task of data imputation was GAIN,
roposed by Yoon et al. [32]. GAIN uses a hint matrix to guide
he discriminator in evaluating the authenticity of generated data.
ubsequently, several excellent models have been developed. For
xample, Zhang et al. [33] introduced a self-attention mechanism
nto GAIN to capture the correlations between different sensors at
ifferent time. Wang et al. [34] innovatively mined the potential
ategory information of data to yield higher-quality imputation
esults. Their proposed method incorporates a classifier into the
AIN framework, which constrains the generator to impute miss-
ng data based on categorical features. Yuan et al. [35] proposed
he STGAN model, which employs a center loss to ensure that
he generator distribution. However, because these GAN-based
ethods primarily focus on data distribution, they are insufficient
hen the data distribution is unclear owing to a large quantity of
issing data.

.3. GNN-based methods

Recently, GNNs have exhibited remarkable performance in
odeling non-Euclidean data – particularly graphs [36] – and
chieved satisfactory performance in the field of transportation.
hang et al. [37] developed a graph convolutional network (GCN)-
ased model for simultaneous traffic prediction and imputation
asks that uses a distance-based predefined fixed weighted adja-
ency matrix to characterize spatial dependencies. Yao et al. [38]

onsidered the network structure of spatial flows and proposed a
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Fig. 1. Illustration of the mask matrix and time interval matrices.
patial interaction GCN model for the spatial origin–destination
low imputation task. Because a single predefined static graph
ased on distance cannot reflect the changes in spatial corre-
ations over time, Xu et al. [39] designed a model that em-
loys GraphSAGE to aggregate spatiotemporal information from
graph constructed by correlation coefficients of historical data.
ith the development of heterogeneous graph research [40–42],
heterogeneous graph-based GCN model was proposed in [43].
his model builds a multigraph from geographical and historical
ata to explicitly model the dynamic dependencies between road
egments. Another GNN variant called GAT, which incorporates
he attention mechanism, was developed to address the problem
f missing traffic data in [44]. Although these methods focus on
odeling spatial dependencies, they are coarse-grained and rely
n sufficient historical data.

. Preliminaries and problem formulation

.1. Preliminaries

Generally, a traffic network with N detectors can be defined
s an undirected graph G = {V, E, SA}, where V = {vi} is a
et of N detectors corresponding to the nodes in the graph, and

= e{vi, vj} represents the spatial connectivity between two
etectors. The adjacency matrix of graph G is structured using
atrix SA ∈ RN×N , according to the following rule:

Aij =

{
1, eij = 1
0, eij = 0

(1)

where eij denotes the connectivity between the graph nodes.
Because speed data is a widely-used form of traffic data, it is the
primary focus of this study. Supposing the detectors collect speed
data at T ∈ {t0, t1, t2, . . . , tT }T time points, then the original
bservation dataset can be expressed as X = {X1, X2, . . . , XT } ∈

RT×N , where the Xt = {xt,1, xt,2, . . . , xt,N} ∈ R1×N denotes the
data collected by all detectors at timestamp t . Additionally, we
define a masking matrix M = (M1,M2, . . . ,MT ) ∈ RT×N that has
the same dimension as the original X to indicate the existence
of the data. The masking matrix is defined as

mij =

{
1, if xij is observed.
0, if xij is missing.

(2)

To explore the potential interaction information between the
observed and missing data as much as possible, we also introduce
a time-lag matrix △ = (δ1, δ2, . . . , δT ) ∈ RT×N to record the time
gaps between the last observation and the present unobserved
information, as in [45]. The elements of △ can be formulated
using the following equation:

δt,j =

⎧⎨⎩
|st − st−1| + δt−1,j, if t > 1,mt−1,j = 0
|st − st−1|, if t > 1,mt−1,j = 1 (3)

0, if t = 1

3

where |st − st−1| is the time interval between two neighboring
samples. By reversing T , we can also obtain the backward time-
lag matrix ▽. For convenience, we provide a specific example in
Fig. 1, wherein we assumed that the data were sampled at equal
intervals.

3.2. Problem formulation

Given the observed records X1:t with missing values M1:t in
the time period {1, 2, . . . , t}, the purpose of data imputation is
to learn a reconstruction function RF that satisfies the following
constraints:

min : {X1, X2, . . . , Xt} − RF {̃X1, X̃2, . . . , X̃t}|M1:t=1 (4)

4. Methodology

This section introduces the proposed missing imputation
framework for traffic data. We first provide an overview of the
proposed model, and then describe each component in detail.

4.1. Network architecture

An overview of the proposed DGCRIN framework is shown
in Fig. 2(a). The network is a bidirectional structure that takes
the observed records X1:t with missing values M1:t and the cor-
responding time-lag δ1:t as input, and generates a recovery of
incomplete data X̂1:t as output in a rolling manner. The unfolding
of the forward process is depicted more specifically in Fig. 2(b).
The overall model comprises three primary components: a graph
generator, a DGCGRU, and a masking GRU. At each time step, the
graph generator first uses the current imputed data and historical
information to adaptively generate a dynamic graph that mod-
els the road network’s spatial correlations. Then, the DGCGRU,
which substitutes the fully connected layers of a traditional GRU
with the dynamic graph convolution operation, is employed to
effectively integrate the dynamic graph with the static graph,
thereby capturing the spatiotemporal dependencies within the
data. Furthermore, an auxiliary masking GRU is used to process
the masking matrix separately to learn information from the
missing patterns. Finally, a fusion layer with a temporal decay
mechanism is employed to perform information fusion, and a
fully connected layer is used for data inference. More details are
provided in the subsequent subsections.

4.2. Graph generator

Road traffic conditions usually encompass complex spatiotem-
poral correlations that change over time, such as morning and
evening peaks. It is therefore reasonable to model the traffic
network dynamically. However, for the data imputation task, the
data samples at each moment may be incomplete, which poses
a challenge for modeling. Inspired by [21], we addressed this
issue by designing a novel dynamic graph generator that utilizes
iteratively generated imputation data and historical information
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Fig. 2. Architecture of DGCRIN (left), and the unfolding of the forward process (right).
o obtain a dynamic adjacency matrix. At each time step, the
enerated imputation data X̂t and previous fusion hidden state

Ht−1 are concatenated as the input:

cont = X̂t ∥ Ĥt−1 (5)

where cont ∈ RB×N×Dcon , ∥ denotes a concatenation operation;
cont is treated as a dynamic-node feature. To reasonably measure
the correlations between nodes, we first use a graph convolution
module to process cont and learn spatial features based on the
predefined graph:

DF t
= Θ∗G(cont ) (6)

where ∗G is the graph convolution and Θ represents the learn-
able parameters. A distance-based predefined graph is a static
structural map of a road network that reflects the basic spatial
relationships between nodes, and can be used to conduct message
passing. Then, a randomly initialized trainable parameter node
embedding E ∈ RN×Dem , where Dem denotes the node embedding
imension, is employed to perform element-wise multiplication
ith DFt to generate a dynamic representation [46] for the nodes:

Et
= tanh(α(DF t

⊙ E)) (7)

here ⊙ denotes the Hadamard product, α and is a hyperparam-
ter that controls the activation function’s saturation rate. Dur-
ng training, E automatically updates the hidden dependencies
mong different data sequences.
Similar to defining a graph by node similarity as in [47],

e adopted a self-multiplying approach to infer the dynamic
orrelations between each pair of nodes and generate a dynamic
raph:

At
= ReLU(tanh(α(DEtDEt T ))) (8)

where DAt represents the dynamic adjacency matrix at time step
t , and the ReLU activation function is used to regularize the
dynamic adjacency matrix by ensuring that all matrix values are
non-negative.

4.3. Dynamic graph convolutional GRU

4.3.1. Dynamic graph convolution
Next, we obtain a distance-based static graph and node-

attribute-based dynamic graph that reflect the correlations be-
tween nodes in the spatial and temporal dimensions, respectively.

The latter provides an effective complement to the former. The

4

Fig. 3. Structure of dynamic graph convolution module. GC() represents the
graph convolution operation.

ensuing problem is the task of extracting and using the informa-
tion between nodes based on the static and dynamic graphs to
capture the spatial dependencies of the road network. We use
a dynamic graph convolution module, as in [21], to perform a
depth-weighted summation of the graph convolution results for
the input feature, static graph SA, and dynamic graph DAt . An
example of a dynamic graph convolution module is illustrated in
Fig. 3. The information propagation step is defined as follows:

Hk
= αHin + βHk−1D̃At + γHk−1S̃A (9)

Hout =

K∑
i=0

HkW k,H0
= Hin = cont (10)

where α, β , and γ are learnable hyperparameters that control the
ratio for retaining the state of each component, K is the depth
of propagation, W k represents learnable parameters, and Hout
denotes the output node state. In the process of in-depth informa-
tion dissemination, we retain part of the original information at
each depth to preserve the locality of the node state and explore a
deep neighborhood [48]. Thus, the model obtains a broader view
and learns richer spatial information at each moment.
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.3.2. DGCGRU
Because we employed the comprehensive information of the

urrent moment to predict the missing data in the next mo-
ent to achieve step-by-step imputation, the model must cap-

ure the spatial and temporal dependencies of data concurrently.
herefore, following [21,49], we introduced a DGCGRU, wherein
he matrix multiplication operation inside the GRU is replaced
ith the aforementioned dynamic graph convolution module. The
GCGRU is defined as follows:
t
= σ (Θz∗G (̂Xt ∥ Ĥt−1)) (11)

t
= σ (Θr∗G (̂Xt ∥ Ĥt−1)) (12)

t
= tanh(Θc∗G (̂Xt ∥ (r t ⊙ Ĥt−1))) (13)

X,t = zt ⊙ Ĥt−1 + (1 − zt ) ⊙ ct (14)

here zt and r t are the reset gates and update gate at time
, respectively; σ denotes the sigmoid activation function; ∗G
epresents the dynamic graph convolution module; Θz , Θr , and
c are learnable parameters; and HX,t are the output hidden
tates.

.4. Information fusion

.4.1. Masking GRU
In addition to mining information from traffic observation

ata, we considered the corresponding masking data; in terms
f the type of data, they are both different—observation data
re numeric, whereas masking data are Boolean [50]. Likewise,
he former is a node feature, whereas the latter indicates the
tate (existing or missing) of the former, and reflects the missing
ata patterns. Thus, it is reasonable to process the two types of
nformation using different components. In this study, we used
n additional GRU to model the masking matrix:

M,t = GRU(Mt ) (15)

here HM,t is the output hidden state of the masking GRU at ti-
e t .

.4.2. Fusion layer with temporal decay
After obtaining the two hidden states, HX,t and HM,t , rep-

esenting different information, we applied a gated unit fusion
trategy as in [51]. By applying a sigmoid activation function
o HX,t , HM,t is treated as a weighted filter gate, that selec-
ively preserves the information of HX,t according to the current
nd historical existing states of the observation data. The fusion
trategy mechanism can be expressed as follows:

M,t = σ (WMHM,t + bM ) (16)

F ,t = tanh(WF (HX,t ⊙ H̃M,t ) + bF ) (17)

here WM , WF , bM and bF are learnable parameters, and HF ,t
enotes the fusion information at time t .
Intuitively, a larger time gap between the last observation

nd missing location minimizes the observation’s contribution
o the reconstruction of missing data. Accordingly, a temporal
ecay factor λt is also learned to capture this recession effect
ia a monotonically decreasing exponential function from δt as
n [22,45,50]. The final hidden state Ĥt is then generated as
ollows:

t =
1

emax(0,Wλδt+bλ)
(18)

t = λt ⊙ HF ,t (19)

here W and b are learnable parameters.
λ λ

5

4.5. Imputation

Based on Ĥt , an approximation X̃t+1 for the next timestamp
t + 1 can be obtained using the following linear transformation:

Xt+1 = WX Ĥt + bX (20)

Xt+1 = Xt+1 ⊙ Mt+1 + X̃t+1 ⊙ (1 − Mt+1) (21)

where WX and bX are learnable parameters, and X̂t+1 is the
imputation result of Xt+1. We replaced the missing values in Xt+1
ith the corresponding estimated values in X̃t+1 to explore the
emporal dependencies of the observed component.

Finally, by considering the above with the given observations
Xs, Xs+1, . . . , Xend}, and corresponding related data {Ms,Ms+1,

. . . ,Mend} and {δs, δs+1, . . . , δend}, the model iteratively generates
forward direction imputation {̂X f

s , X̂
f
s+1, . . . , X̂

f
end} and backward

direction imputation {̂Xb
s , X̂

b
s+1, . . . , X̂

b
end}. The final imputation

can be obtained by combining the following steps:

Xi =

⎧⎪⎪⎨⎪⎪⎩
X̂b
s i = s
1
2
(̂X f

i + X̂b
i ) s < i < end

X̂ f
end i = end

(22)

4.6. Loss

To optimize DGCRIN, we employed a loss function with two
components to train the model as follows:

Loss =
1
T

T∑
t=1

k1 < Mt , Le(Xt , X̂t ) > +k2 < 1 − Mt , Le (̂X
f
t , X̂

b
t ) >

(23)

where k1 and k2 are hyper-parameters that control the propor-
tion of the two-parts loss, and Le represents the mean absolute
error (MAE). In the formula, the first term measures the error
between the observed and estimated values, ensuring that the
model reconstructs the real observed value as much as possible.
The second term enforces the missing estimation in each step
to be consistent in both directions, thereby accelerating model
convergence.

5. Experiment

To investigate the effectiveness of our proposed model, we
conducted a series of experiments on two real traffic datasets
with different missing data scenarios. The following section first
introduces our dataset and evaluation metrics, and then provides
a brief description of the comparison methods and experimental
setting. Finally, relevant experimental results are analyzed and
visualized.

5.1. Datasets

To evaluate the performance of DGCRIN, comparative ex-
periments were conducted on two real-world traffic datasets:
PeMS08 and PeMS04. Details regarding the datasets are presented
in Table 1. Both represent public traffic speed datasets collected
by the California Department of Transportation (Caltrans) at dif-
ferent times in different areas. We designed two methods to
simulate missing data: random missing (RM) and continuous
missing (CM). For RM, we randomly removed a certain amount
of observed data in the matrix. For CM, which can be classified
as temporal continuous missing (TCM) or spatially continuous
missing (SCM), we randomly selected some contiguous regions
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Table 1
Statistics of datasets.
Datasets Time_range Total_days Samples Nodes Sample_rate Input_len

PeMS-08 7/1/2016-8/31/2016 62 17856 170 5 min 12

PeMS-04 1/1/2018-2/28/2018 59 16992 307 5 min 12
Fig. 4. Illustration of RM, TCM and SCM scenarios.
n the temporal or spatial dimensions, respectively, and removed
ll observations in those regions. Examples of all three methods
re illustrated in Fig. 4. Following [51], we verified the model’s
alidity with overall missing data rates of 10%, 30%, 50% and 70%
hree commonly used evaluation metrics – MAPE, RMSE and
AE – were measured to test the accuracy of imputation:

APE(X, X̂) =
1
m

m∑
i=1

|
xi − x̂i

xi
| × 100% (24)

RMSE(X, X̂) =

√ 1
m

m∑
i=1

(xi − x̂i)2 (25)

AE(X, X̂) =
1
m

m∑
i=1

|xi − x̂i| (26)

5.2. Benchmark imputation models

We tested a variety of state-of-the-art baselines to compare
performance with DGCRIN. The following baselines were consid-
ered in the experiment:

(1) Traditional statistical method:

(a) HA: The historical average (HA) method uses the
average of the previous five days to estimate the
missing data.

(2) Bayesian matrix/tensor factorization methods:

(a) BGCP [7]: Bayesian Gaussian C/P (BGCP) decomposi-
tion uses the Markov chain algorithm to learn latent
factor matrices, such as low-rank structures.

(b) BTTF [9]: Bayesian temporal tensor factorization, is
a Bayesian probabilistic matrix factorization (BPMF)
[52] model that integrates low-rank matrix/tensor
factorization and vector autoregressive (VAR) pro-
cesses into a single probabilistic graphical model that
imposes temporal smoothness.

(3) Low-rank tensor completion method:

(a) LRTC-TNN [8]: In the Low-rank tensor completion
(LRTC) with truncated nuclear norm (TNN), based
on HaLRTC [53], a novel truncated kernel norm is
defined on the tensor to solve the problem of missing
spatiotemporal traffic data in a low-rank structure.
6

(4) GAN-based method:

(a) PC-GAIN [34]: A pseudo-label conditional GAIN is a
GAN-based model that utilizes the potential cate-
gory information of an entity to enhance the model’s
generation capabilities.

(5) Deep learning-based methods:

(a) BLSTM-I [29]: The bidirectional LSTM with an impu-
tation mechanism is an RNN-based model that cap-
tures temporal dependencies using a bidirectional
structure. An imputation unit was implemented in-
side the LSTM to handle missing values.

(b) GCBRNN [37]: A graph convolutional bidirectional
recurrent neural network is a combination of GCN
and GRU, which applies the graph convolution oper-
ation and 1 × 1 convolution module to capture the
spatiotemporal dependencies in traffic data based on
a static graph.

5.3. Experimental settings

The proposed model was implemented using PyTorch soft-
ware. In the training stage, we utilized the Adam optimizer to
update all model parameters, where the learning rate and batch
size were set to 1e-3 and 128, respectively. We repeated the
experiment five times with 200 epochs and reported the average
values of all evaluation metrics. The node embedding dimensions
and hidden-state size were set to 40 and 64, respectively. The
proportions of the two losses k1 and k2 were assigned to 10
and 1, respectively. In addition, a 20-step early stopping method
was adopted to optimize the model parameters and prevent
overfitting.

For intelligent computing methods (PC-GAIN, BLSTM-I, and
GCBRNN), we set the relevant hyperparameters according to the
recommended values specified in the respective papers. For ma-
trix/tensor methods (BGCP, BTTF, LRTC-TNN), we reconstructed
all data into a third-order tensor (sensor × day × time slot) as
input. The low ranks of BGCP and BTTF were set to 30.

5.4. Results

5.4.1. Imputation results and visualization
Tables 2 and 3 summarize the imputation performance of

DGCRIN and its competing baselines for the two spatiotemporal
datasets. We can observe from the tables that DGCRIN signif-

icantly outperformed all baseline models in different missing
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Table 2
Performance comparison (in MAPE/RMSE/MAE) for imputation tasks with RM.
Datasets PeMS08(RM) PeMS04(RM)

10% 30% 50% 70% 10% 30% 50% 70%

HA
5.88%
5.493
2.591

5.83%
5.511
2.616

5.96%
5.587
2.647

6.11%
5.686
2.694

7.75%
6.518
3.435

7.83%
6.602
3.459

7.93%
6.681
3.486

7.99%
6.774
3.505

BGCP
3.4%
3.357
1.640

3.39%
3.379
1.650

3.44%
3.422
1.666

3.43%
3.434
1.665

4.52%
4.133
2.096

4.48%
4.106
2.080

4.52%
4.128
2.089

4.52%
4.130
2.097

BLSTM-I
2.92%
3.091
1.281

3.18%
3.333
1.398

3.62%
3.702
1.557

4.35%
4.413
1.837

4.17%
4.025
1.864

4.49%
4.304
1.995

4.71%
4.507
2.065

5.40%
5.074
2.329

BTTF
3.76%
3.724
1.845

3.76%
3.752
1.862

3.76%
3.754
1.852

3.81%
3.815
1.875

5.27%
4.881
2.435

5.28%
4.904
2.428

5.30%
4.905
2.436

5.28%
4.903
2.432

PC-GAIN
4.59%
4.437
2.155

4.56%
4.473
2.063

4.88%
4.675
2.230

10.47%
9.014
5.813

5.20%
4.482
2.454

4.80%
4.309
2.268

5.24%
4.696
2.487

13.02%
13.33
7.238

LRTC-TNN
1.38%
1.379
0.735

1.61%
1.662
0.846

2.01%
2.061
1.025

2.58%
2.648
1.289

1.95%
1.780
1.001

2.34%
2.181
1.178

2.94%
2.734
1.429

3.57%
3.313
1.722

GCBRNN
1.18%
1.304
0.660

1.48%
1.658
0.801

1.99%
2.140
1.053

2.92%
2.950
1.492

1.51%
1.552
0.822

1.91%
2.011
0.989

2.60%
2.640
1.270

4.10%
3.714
1.907

DGCRIN
1.16%
1.261
0.648

1.34%
1.562
0.746

1.73%
1.913
0.882

2.34%
2.512
1.134

1.51%
1.511
0.817

1.82%
1.863
0.938

2.29%
2.295
1.121

3.07%
3.019
1.416

The best results are highlighted in bold, and the second-best results are underlined.
Table 3
Performance comparison (in MAPE/RMSE/MAE) under TCM and SCM for imputation tasks.
Datasets PeMS08(TCM) PeMS08(SCM) PeMS04(TCM) PeMS04(SCM)

30% 70% 30% 70% 30% 70% 30% 70%

HA
5.86%
5.527
2.616

6.11%
5.703
2.698

5.82%
5.511
2.615

6.22%
5.762
2.732

7.84%
6.607
3.463

8.02%
6.781
3.506

7.94%
6.633
3.474

8.00%
6.768
3.501

BGCP
3.42%
3.425
1.652

3.47%
3.485
1.680

3.43%
3.404
1.656

3.51%
3.493
1.697

4.51%
4.138
2.094

4.54%
4.142
2.093

4.53%
4.130
2.085

4.55%
4.143
2.102

BLSTM-I
4.36%
4.378
1.868

4.87%
4.702
2.107

3.23%
3.359
1.410

4.43%
4.321
1.841

4.82%
4.563
2.133

5.44%
5.050
2.351

4.48%
4.300
1.970

5.30%
4.962
2.294

BTTF
3.84%
3.795
1.887

3.83%
3.812
1.894

3.81%
3.780
1.877

3.86%
3.855
1.893

5.33%
4.908
2.461

5.32%
4.916
2.449

5.34%
4.910
2.436

5.30%
4.903
2.436

PC-GAIN
4.54%
4.433
2.072

11.63%
9.325
5.922

4.96%
4.770
2.282

13.24%
10.029
6.269

4.78%
4.265
2.233

13.20%
13.407
7.307

5.12%
4.411
2.334

16.10%
15.288
9.251

LRTC-TNN
2.42%
2.509
1.210

2.78%
2.881
1.386

1.64%
1.665
0.853

2.97%
3.622
1.489

3.39%
3.166
1.637

3.81%
3.562
1.834

2.39%
2.201
1.187

3.69%
3.689
1.782

GCBRNN
2.71%
2.811
1.371

3.28%
3.223
1.633

1.42%
1.643
0.840

3.03%
3.012
1.521

3.60%
3.385
1.667

4.52%
4.018
2.07

1.93%
2.032
0.995

4.13%
3.879
1.876

DGCRIN
2.28%
2.467
1.114

2.70%
2.732
1.245

1.41%
1.545
0.756

2.55%
2.797
1.214

3.38%
3.062
1.466

3.67%
3.409
1.614

1.83%
1.871
0.944

3.15%
3.070
1.446

The best results are highlighted in bold, and the second-best results are underlined.
cenarios. For most models, it is apparent that the CM scenario is
ore challenging than the RM scenario for the imputation task.
he MAPE/RMSE/MAE values generally increased with missing
ates, suggesting that the patterns and rates of missing data
ave a significant impact on model performance. Furthermore, all
odels performed worse on PeMS04 than PeMS08, which may
e attributed to the higher number of road network nodes that
7

increased the complexity of the former. In most cases, the data-
distribution-based method PC-GAIN performed poorly and ap-
peared insufficient with high rates of missing data. Matrix/tensor
factorization methods (BGCP and BTTF) accumulated relatively
large errors because they ignore temporal characteristics.

In particular, the performance of the BLSTM-I, GCBRNN, and
DGCRIN models degraded the most in the TCM scenario, which
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Fig. 5. Imputation examples for PeMS08 under different missing scenarios (8/20−8/26, 2016, sensor #133). In these panels, gray curves represent the ground truth,
ed curves denote the imputed values, and blue dots correspond to missing points.
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ay be related to the model structure: all three models are
ased on an iteratively generated pattern that is prone to er-
or accumulation in the time dimension. One primary difference
etween DGCRIN and GCBRNN is that the former considers the
ynamic correlation of the road network. These experimental
esults demonstrate the importance of dynamic spatiotemporal
orrelations for traffic data imputation, and the effectiveness of
GCRIN in modeling dynamic spatiotemporal dependencies.
To illustrate the proposed model’s imputation effect more in-

uitively, Figs. 5 and 6 visualize imputation instances for PeMS08
nd PeMS04 under different missing scenarios.

.4.2. Ablation study
To examine the validity of the submodules (i.e., time-lag

atrix, masking GRU, dynamic graph, and static graph) in the
GCRIN framework, we performed ablation experiments with
our variants of PeMS08 in RM with a 30% missing rate:

(1) DGCRIN-I: DGCRIN with only a forward process to demon-
strate the advantages of bidirectional learning.

(2) DGCRIN-II: DGCRIN without a time-lag matrix to decay the
fusion hidden state.

(3) DGCRIN-III: DGCRIN without masking GRU to learn the
missing pattern information.

(4) DGCRIN-IV: DGCRIN without a graph generator to learn the
spatial correlations between road network nodes.

(5) DGCRIN-V: DGCRIN without a static graph in the informa-
tion propagation process of the dynamic graph convolution

module. d

8

The experimental results of the ablation studies are shown
n Fig. 7. The results illustrate that DGCRIN is superior to other
ariants. The following conclusions can be drawn from these re-
ults. First, the bidirectional structure has a significant impact on
odel performance, as it enables the model to comprehensively
onsider the forward and backward propagation of data. Second,
he dynamic graph module is a critical component, as it extracts
otential spatiotemporal dependency information by tracking the
ynamic changes of the road network, which is beneficial for the
mputation task. Third, the positive effect of the masking GRU
s evident. Finally, both the decay mechanism of the time-lag
atrix and the static graph have been demonstrated to improve
erformance.

.4.3. Hyperparameter sensitivity
To further analyze DGCRIN, we evaluated model performance

ith different hyperparameters – the node embedding dimension
E) and size of hidden state (H) – on PeMS08 under the 20% RM
cenario. We only reported the RMSE and MAE results, as the
APE results are less volatile. As shown in Fig. 8, an increase

n E correlates with a gradual decrease in MSE and MAE, as the
omplexity of road conditions requires a higher dimensionality of
ode embedding to store sufficient information. When E becomes
ery large, performance decreases, which may be a result of
verfitting. We then changed H from 16 to 128, the results are
hown in Fig. 9. RMSE and MAE showed similar variation patterns,
s both initially decreased with an increase in H , and started to
ncrease when H exceeded 64. One possible cause of the eventual

ecrease is the redundancy of hidden state information.
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Fig. 6. Imputation examples for PeMS04 under different missing scenarios (2/15 − 2/21, 2018, sensor #96). In these panels, gray curves indicate the ground truth,
red curves denote the imputed values, and blue dots represent missing data.
Fig. 7. Ablation results of DGCRIN on PeMS08 in RM with 30% missing-data rate.
. Conclusion

In this study, we modeled the dynamic spatial dependencies
f road networks under the conditions of incomplete traffic data,
nd developed DGCRIN for traffic data imputation. Inspired by
he iterative generation characteristics of RNNs, we designed a
ovel graph generator to model the dynamic spatial correlations
etween road network nodes at each moment using the recurrent
enerated imputation data and historical information. Based on
he dynamic graph, we employed a DGCGRU module to efficiently
9

capture the spatiotemporal characteristics of data by applying
graph convolution to static and dynamic graphs. In addition, we
studied how to effectively mine information from a variety of
diverse data to provide gains for imputation tasks. Extensive
experiments on two real-world datasets proved the competitive
computational performance of the proposed method over that of
existing methods under different missing data scenarios.

In the future, we will continue to develop more efficient
methods to model the dynamic spatial correlations of incomplete
traffic data. We also plan to integrate additional external factors
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Fig. 8. Hyperparameter E sensitivity test.
Fig. 9. Hyperparameter H sensitivity test.
such as weather and POI similarity graphs) into the model, with
he expectation that DGCRIN can perform data imputation and
rediction tasks simultaneously.
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