
3788 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019

Weighted Mixed-Norm Regularized Regression
for Robust Face Identification

Jianwei Zheng , Kechen Lou, Xi Yang , Cong Bai , and Jinhui Tang , Senior Member, IEEE

Abstract— Face identification (FI) via regression-based classi-
fication has been extensively studied during the recent years.
Most vector-based methods achieve appealing performance in
handing the noncontiguous pixelwise noises, while some matrix-
based regression methods show great potential in dealing with
contiguous imagewise noises. However, there is a lack of con-
sideration of the mixture noises case, where both contiguous
and noncontiguous noises are jointly contained. In this paper,
we propose a weighted mixed-norm regression (WMNR) method
to cope with the mixture image corruption. WMNR reveals
certain essential characteristics of FI problems and bridges the
vector- and matrix-based methods. Particularly, WMNR pro-
vides two advantages for both theoretical analysis and practical
implementation. First, it generalizes possible distributions of the
residuals into a unified feature weighted loss function. Second,
it constrains the residual image as low-rank structure that can
be quantified with general nonconvex functions and a weight
factor. Moreover, a new reweighted alternating direction method
of multipliers algorithm is derived for the proposed WMNR
model. The algorithm exhibits great computational efficiency
since it divides the original optimization problem into certain
subproblems with analytical solution or can be implemented
in a parallel manner. Extensive experiments on several public
face databases demonstrate the advantages of WMNR over the
state-of-the-art regression-based approaches. More specifically,
the WMNR achieves an appealing tradeoff between identification
accuracy and computational efficiency. Compared with the pure
vector-based methods, our approach achieves more than 10%
performance improvement and saves more than 70% of runtime,
especially in severe corruption scenarios. Compared with the
pure matrix-based methods, although it requires slightly more
computation time, the performance benefits are even larger; up
to 20% improvement can be obtained.

Index Terms— Alternating direction method of multipliers
(ADMM), face identification (FI), matrix regression, sparse
representation, weighted nonconvex norm.

NOMENCLATURE

m Feature dimension
n Data size
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o Image height
q Image width
ν Rank of a given matrix
X ∈ Rm×n Dictionary matrix
Y ∈ Ro×q Query image
B = U�VT Singular value decomposition of B
σ Singular value
Vec(·) Vectorization by column concatenation
Mat(·) Inverse operator of Vec(·)
� Elementwise multiplication

I. INTRODUCTION

FACE identification (FI) is one of the most attrac-
tive problems in computer vision and multimedia com-

munity, and it has been extensively studied during the
past two decades. Various methods and their variants have
been widely investigated and applied, such as convolutional
neural networks (CNNs) [1], metric learning [2], regression
analysis [3], [4], and so on. The CNN-based approach has
been confirmed to be particularly successful due to its strong
capability of learning extremely powerful hierarchical nonlin-
ear representation of the image. However, the implementation
of the CNN-based approach normally requires higher compu-
tation power and larger amount of training data due to the
massive tuning parameters of the CNN model [5]. On the
other hand, metric learning-based approaches are capable of
learning the discriminative semantic information for measuring
the similarities among all images under the circumstance of
high dimensional and small size data. However, they are
incompetent to tackle the image corruptions [6].

This paper focuses on the regression-based approaches,
which have aroused broad attentions due to its interpretability
of intuitive principle and robustness to specific noises [7].
The most pioneered work of regression-based methods for
FI is the linear representation classifier [8], which seeks for
a suitable representation of any probe sample, and identifies
the sample by examining which class can lead to the minimal
reconstruction error. Along this line, many studies have
been evolved on the characterizations of the representation
coefficients and the error term in regression problems with
respect to the regression model [9].

A. Related Work
In the regression-based approaches, it is well recognized that

the regularization constraints, the representation residual, and
the noise/corruption are crucial issues to be considered. The
regularization constraints are usually imposed upon the regres-
sion models to avoid overfitting of the representation coef-
ficients. Wright et al. [10] presented a sparse representation
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classifier (SRC) for FI by employing the l1-norm minimization
to approximate the l0-norm constraint. Zhang et al. [11]
asserted that it is the collaborative mechanism of l1-norm,
rather than the sparsity of the l0-norm that renders SRC result-
ful, and their collaborative representation classifier (CRC) can
achieve similar results as SRC but significantly save the run-
time. Huang et al. [12] further proposed a new sparse coding
method by utilizing label information and l2,1-norm, which
achieves both flat and structured sparsity for the vector repre-
sentations. The corresponding model is more discriminative,
and the method is more efficient and effective. In correntropy-
based sparse representation (CESR) [13] and structured sparse
error coding (SSEC) [14], regularization constraint is selected
to be the indicator function of the nonnegative orthant, such
that a nonnegative coefficient vector is enforced.

The representation residuals of aforementioned works are all
measured by l2-norm of the error vector. Such treatment inher-
ently assumes that the residuals follow a Gaussian distribution.
However, in practical FI problems, the distribution of residuals
is more complicated [15], [16]. To deal with the sparse
pixel corruption, Wright et al. [10] further assumed that the
noises follow a Laplacian distribution, and they presented the
robust SRC (RSRC) model. Similarly, Naseem et al. [17] and
Zhang et al. [18] extended their models to the robust version
using the Huber and Laplacian estimator to handle extreme
pixel noise and illumination variations, respectively. However,
the effectiveness of these methods is based on the correct
knowledge of error distribution, which is, in fact, difficult to
obtain in prior. To overcome such restriction, Yang et al. [19]
and Zheng [20] borrowed the idea of robust regression [21] and
presented the regularized robust classifier (RRC) and iterative
reconstrained group sparse classifier (IRGSC), respectively.
He et al. [13] made use of the correntropy-induced robust
error metric and provided the CESR method. Although RRC,
IRGSC, and CESR are proposed independently, they are all
essentially a robust regression model sharing the idea that
correntrogy can be considered as an M-estimator. To unify the
additive model, such as SRC and the multiplicative models
such as RRC, IRGSC and CESR, He et al. [22] proposed
a framework toward generalizing the multiple half-quadratic
functions in light of the maximum correntropy criterion. All of
these robust-regression-correlated methods have been applied
to the real-world FI problems and yielded promising results.

It is worth noting that the aforementioned regression meth-
ods all use the vector-based error model, under which the
occurrence of pixel errors is assumed to be independent. This
assumption does not hold when contiguous corruptions, such
as occlusion, disguise, or block shadow, present. In these
cases, errors are spatially correlated and contain rich structural
information [23]. Moreover, the vector-based methods are
time-consuming due to the high-dimensional image resolution.
To overcome these limitations, Yang et al. [24] presented
the nuclear norm-based matrix representation (NMR) model
for FI. NMR not only alleviates the inherent correlations
caused by contiguous noises via the involved singular value
decomposition (SVD) but also directly characterizes the holis-
tic structure of error image with efficient matrix computation.
However, it has been indicated in [25] and [26] that the

reconstruction performance of the convex nuclear norm will
lead to a suboptimal solution. For this issue, Luo et al. [27]
enforced low rank regularization by using Schatten p-norm to
guarantee a more accurate recovery of the query sample. Simi-
larly, Xie et al. [28] substituted the nuclear norm with noncon-
vex function for characterizing the low rank structure of the
error image to achieve better identification performance. How-
ever, both nuclear norm and Schatten p-norm treat all singular
values equally, which are not flexible in specific scenarios,
where different rank components have different contributions.

B. Contribution and Organization

In view of the merits and demerits of the existing methods,
it is quite evident that the pure vector- or matrix-based meth-
ods can only handle single type of noises, i.e., noncontiguous
or contiguous, and it is reasonable to expect a more flexible
way dealing with various kinds of noises. In this paper,
we propose a new low-rank regularizer, named weighted non-
convex norm minimization (WN2M), which provides a better
approximation to the original rank minimization problem.
Furthermore, assuming that the real corruption is a combi-
nation of contiguous and noncontiguous noises, we combine
a tailored loss function and WN2M into a unified formula for
more robust FI application. Comparatively, notice that some
other matrix-based methods, such as the nuclear norm regu-
larized regression (NR) [29] for Gaussian error distribution,
the nuclear-l1 norm joint matrix regression (NL1R) [30], and
the robust matrix regression (RMR) [28] for the Laplacian
error distribution, all adopt certain types of simple rank
approximation constraints and are developed specially for
some usual pixel noises, which are not flexible for the practical
FI application. In summary, the contributions of this paper
include the following aspects.

1) A new low-rank regularizer, named WN2M, is pre-
sented to unify the nonconvex constraint and component
weights into a general term by taking the genuine
error structure into consideration. The general analytical
solution of WN2M can be derived when the weights
are ranged in ascending order, and the optimum can
be efficiently computed by decoupling the relevant
objective function into several independent nonconvex
subproblems so as to be solved in a parallel manner.

2) A general loss function is proposed to estimate the
representation residuals, where a tailored error weight is
learned to distinguish inliers from outliers. This weight
can be obtained efficiently according to an analyti-
cal solution that contains a single parameter of clear
physical meaning. Particularly, the determined weight
assigns small values to noise pixels and large values to
the active pixels. Such mechanism reveals the level of
contributions of different pixels.

3) The novel weighted mixed-norm regression (WMNR)
model, which benefits from the proposed tailored loss
function as well as WN2M, is provided to deal with mix-
ture noises in FI problems. In computational implemen-
tations, the relevant minimization problem is explored
by a new iterative reweighted alternating direction
method of multipliers (ADMM) approach, where each
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Fig. 1. Regression-based model. The query samples with various types of
noises can be regressed as the linear combination of dictionary samples plus
the error e.

subproblem can be solved analytically and/or efficiently.
Moreover, the proposed approach is flexible to cope with
different types of coefficients regularization problems.

The remainder of this paper is organized as follows.
In Section II, we present a unified formula for the regression-
based classification. In Section III, we give a tailored loss func-
tion and the robust low-rank constraint with general nonconvex
functions and then provide the solutions to these subproblems.
The proposed model of WMNR and its optimization scheme
are given in Section IV. Experimental results and detailed
discussions on the performance of the proposed algorithms are
given in Section V, and conclusions are drawn in Section VI.
For convenience, some notations and theoretical proofs are
provided in the Appendixes.

II. UNIFIED FORMULA FOR REGRESSION-
BASED CLASSIFICATION

As mentioned in Section I-A, various regression-based
methods have been proposed for different kinds of FI prob-
lems, yet their main principles are quite the same, which is
to derive a series of appropriate regression coefficients that
may greatly facilitate the subsequent classification scheme.
Having fully aware of their principal similarity and technical
differences, in this section, we present a unified formulation
that combines all the essential factors in the regression-based
classification.

As illustrated in Fig. 1, the fundamental idea behind the
regression-based model is that any query samples with various
types of noises can be represented as the superposition of
dictionary samples and the residual e. To be more specific,
given any query face image Y ∈ Ro×q, it is possible to show

y = Xa + e (1)

where y = Vec(Y) ∈ Rm with m = o × q, X =
[X1, X2, . . . , Xc] ∈ Rm×n is the dictionary matrix with the
set of samples from c individuals, and a is the coefficient
vector used for computing the minimum class residual and
determining the face identity [8]. From Fig. 1, we can see
that the residual image e normally possesses the following
two characteristics.

1) It follows certain distribution that can be faithfully
reflected by a tailored loss function, e.g., the Gaussian
function [10], the Laplacian function [18], or the
Logistic function [19].

2) The residual image E = Mat(e) is always considered
to be low-rank since many of its entries are useless
due to the corruption of contiguous noises, e.g., certain
occlusion images.

Considering the nature of the regression-based model and
the residual image, we present a unified criterion to obtain the
regression coefficients

min
m∑

i=1

φ(ei) +
ν∑

i=1

g(σi(E)) + λϑ(a) (2)

where φ is a loss function that is widely used and normally
formulated by the M-estimators in various forms [31], ei is
the ith residual entry, g is a surrogate function with low-rank
constraint, and ϑ(a) is the regularization of a with λ being
a balance parameter. It is evident that the formulation of (2)
generalizes all essential components of the regression-based
analysis, and it is the footstone of our WMNR method and may
be beneficial to derive new approaches. In addition, different
choices of φ, g, and ϑ lead to various regression-based
methods. In the following, we give an overview of the existed
methods regarding loss function φ, low-rank constraint g, and
coefficient regularization ϑ .

A. Loss Function
The minimization of loss functions with different types

of constraints lead to the core technology for the noncon-
tiguous noise suppression. The most widely adopted one is
the Gaussian function that employs l2-norm to characterize
the reconstruction residual [8], [10], i.e.,

∑
φ(ei) = �e�2

2.
Although l2-norm behaves well in most of the routine classifi-
cation tasks, it has been theoretically proved to be sensitive to
sparse outliers [19], [32]. Comparatively, RSRC [10] resorts
to the Laplacian function for l1-sparsity constrained maximum
likelihood estimation solution. Likewise, RCRC [18] charac-
terizes the fidelity with l1-norm, i.e.,

∑
φ(ei) = �e�1, for

robustness to sparse corruption. However, the l1-sparsity con-
straint normally makes the computational complexity of both
RSRC and RCRC high. Inspired by the robust regression the-
ory, RRC [19] models the representations as a weighted regres-
sion problem and adopts an independent mapping function
to characterize the noises. Specifically, RRC uses

∑
φ(ei) =

�w � e�2
2 as the loss function, and the weight w is set to be

the Logistic function as follows:

wi = exp
( − βe2

i + βθ
)

1 + exp
( − βe2

i + βθ
) (3)

whose parameters β and θ are both positive scalars for desir-
able restraint to noises. With the help of w, RRC is capable
of distinguishing the effective features from the invalid ones.

B. Low-Rank Constraint
The aforementioned loss functions characterize the image

error in a pixel-by-pixel manner so as to tackle the noncontigu-
ous corruption problems. However, they neglect the structural
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information contained in the residual image E. To remedy this
issue, the rank minimization constraint, i.e., rank(E), is widely
used to determine the regression coefficients. In practice,
rank(E) is generally converted into nuclear norm, i.e., �E�∗ =∑

σi(E), for optimization tractability [33]. A variety of
recently proposed methods, including NMR [24], NL1R [30],
NR [29], and so on, all adopt

∑
g(σi(E)) = �E�∗ to

approximate the rank constraint.
It is known that the nuclear norm minimization is equivalent

to low-rank constraint under necessary incoherence condi-
tions [28]. However, the corresponding solution is always
suboptimal to the original rank minimization since it is a
loose approximation. This fact motivates us to pursue the non-
convex surrogate function to approximate the rank constraint.
SpLq [27] adopts the Schatten p-norm, i.e.,

∑
g(σi(E)) =

�E�p
Sp

= ∑
σi(E)p, p ∈ (0, 1], to regress the query samples,

which possesses two merits. First, it follows the classical Abel
theorem that the Schatten p-norm constraint has algebraic roots
when p = 1/2, 2/3, which results in the analytical solution of
subproblems in SpLq optimization. Second, SpLq can alleviate
the correlations among features in residual matrix E and make
the distribution approximately be Gaussian. Another way to
improve the performance of nuclear norm is to treat different
rank components unequally as in RMR [28], which presents
a weighted nuclear norm constrained matrix regression for FI,
i.e.,

∑
g(σi(E)) = �E�s,∗ = ∑

siσi(E), where the weight si

ensures a better approximation to the original rank minimiza-
tion problem.

C. Coefficients Regularization
Different regularizers lead to different properties of repre-

sentation coefficients a. A carefully chosen ϑ(a) will force
a to be concentrated in reasonable areas so that it can be
regressed elaborately by samples in X. The most pioneered
confine of ϑ(a) is the l1-norm, which forces most of the
coefficients related to other subjects to be zero. SRC [10],
RRC [19], and NR [29] all adopt this constraint into their
cost functions for sparsity. Another popular choice is the
l2-norm that makes the unconcerned part of a to be small in
magnitude but not absolutely zero. Due to its high efficiency,
l2-norm has been widely used in CRC [18], NMR [24],
RMR [28], and so on. By jointly considering the sparsity
and collaboration, GSC [12] adopts l2-norm for intraclass
coefficients and l1-norm for interclass coefficients. This group
property makes the samples from the same class prefer to
hold the flat values, i.e., it is expected that the samples from
the correct subject can dominate the coding coefficients via
ϑ(a) = �a�2,1 = ∑c

i=1 �ai�2. Besides, in CESR [13] and
SSEC [14], ϑ(a) is selected to be the indicator function of the
nonnegative orthant as I(ai) = ai, when ai > 0, or I(ai) = 0,
when ai ≤ 0, such that a nonnegative regularization term a ≥ 0
is enforced.

III. ROBUST LOSS APPROXIMATIONS

FOR MIXTURE CORRUPTION

In Section II, we generalize most of the existing methods
regarding the regression coefficient into a unified formula
consisting of φ, g, and ϑ , by which different regression-based

classification methods can be implemented. In this section,
we focus on the feature learned loss function and the weighted
nonconvex low-rank constraint so as to handle both the con-
tiguous and noncontiguous image corruptions simultaneously
in the robust FI problem.

A. Feature Learned Loss Function
In general, it is a challenging problem to predefine φ for

the regression residual due to the diversity of noise variations.
A natural assumption is that the unknown function φ is sym-
metric around zero and differentiable [4], [19]. Furthermore,
the function φ(r1/2) should be concave and increasing when
r > 0 [36]. These conditions lead to the fact that φ(r)�/r is
decreasing for r > 0. Under these assumptions, φ(r) can be
represented as follows (see [37]):

φ(r) = inf
ζ>0

1

2
ζ r2 − φ∗

(
1

2
ζ

)
(4)

where φ∗(ζ ) is the conjugate function of φ(r1/2) with varia-
tional parameter ζ . Substituting (4) into the loss function (2),
we can write the subproblem with respect to φ as follows:

min
w

1

2
�√W(y − Xa)�2

2 + ϕ(w) (5)

where W = diag(w) with w = (ζi, . . ., ζm), ϕ(w) =∑m
i=1 φ∗(ζi/2), and ζ = φ(r)�/r is the optimal value of the

dual function φ∗((1/2)ζ ) = infr(1/2)ζ r2 − φ(r).
For the residual term y− Xa in subproblem (5), a desirable

w should be able to assign large weights to pixels with
small error, whereas small weights to pixels with large error.
This property distinguishes effective features from the invalid
ones when the dictionary with clear images and query with
corrupted ones are given. To achieve such property, any nonin-
creasing function of the form φ(r)�/r is optional. Specifically,
if we employ wi = 2 or wi = 1/|ei|, i = 1, . . ., m, then the loss
function (5) reduces to the Gaussian [10] or Laplacian [18]
distribution, respectively. However, from Fig. 1, we can see
that the real-world corruption may be more complex, e.g.,
the mixture of sparse noises and block occlusion. With regard
to various types of noises, we introduce the adaptive weight
estimation technique into optimization procedure to improve
the robustness and flexibility of the method.

For the regularization term ϕ(w) of subproblem (5),
the usual selection can be l2-norm, l1-norm, l2,1-norm, as well
as nonnegative orthant. Considering that all the weights should
be nonnegative, we further add a probability constraint onto w
for feature balance and numerical stability, i.e., wT 1 = 1 and
w ≥ 0. Under these conditions, the l1-norm and nonnegative
orthant are constant or naturally met. Besides, without any
prior knowledge, it is unable to partition the weights into
different groups. Thus, we adopt l2-norm here to obtain
nontrivial and closed-form solution.

By the choice of residual term and regularization term, our
loss function turns out to be

min
wT1=1,w≥0

1

2
�√W(y − Xa)�2

2 + γ �w�2
2 (6)

where γ is a tunable parameter. Let X = [f1; f2; , . . . , ; fm]
with fT

i ∈ Rn being the ith row of X, and ei = yi − fia denotes
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the component error with respect to vector a. Problem (6) can
be rewritten as follows:

min
w

m∑
i=1

{
wie

2
i + γ w2

i

} = min
w

∥∥∥∥w + d
2γ

∥∥∥∥
2

2

s.t. wT1 = 1, wi ≥ 0, i = 1 ∼ m (7)

where we denote di = e2
i for notation simplicity. The

Lagrangian function of (7) is

L(w, α, v) = 1

2

∥∥∥∥w + d
2γ

∥∥∥∥
2

2
− α(wT1 − 1) − vTw (8)

with two Lagrangian multipliers α ≥ 0 and v ≥ 0. According
to the Karush–Kuhn–Tucher (KKT) condition [37], the optimal
solution w is

w =
(

− d
2γ

+ α

)
+ (9)

where (·)+ keeps the positive elements unaltered and sets the
rest to be zero.

In a practical FI problem, a sparse w is preferable due to
the impact of various noises. Another advantage of sparsity
is that the computational cost would be alleviated to some
extent. Without loss of generality, we assume d1, . . ., dm

are arranged in the ascending order, and the optimal w has
k > 0 nonzero weights, i.e., wk > 0 and wk+1 = 0. These
assumptions imply that

−dk+1

2γ
+ α = 0. (10)

Besides, from constraint wT1 = 1, we get
k∑

j=1

(
− dj

2γ
+ α

)
= 1 ⇒ α = 1

k
+

k∑
j=1

dj

2γ k
. (11)

Combining (10) and (11), we get

γ =
⎛
⎝kdk+1 −

k∑
j=1

dj

⎞
⎠/2. (12)

With the derived α and γ , the optimal w can be determined as

w = (dk+1 − d)/

⎛
⎝kdk+1 −

k∑
j=1

dj

⎞
⎠. (13)

Fig. 2 exhibits some typical weights function, including
Gaussian, Laplacian, Logistic, and the one proposed by (13).
It is clear that the Gaussian distribution treats all features
equally, no matter whether it is inlier or not. On the other
hand, the Laplacian distribution assigns higher values to
features with smaller residuals. However, the weight tends
to infinity when the residual is close to zero, which causes
numerical instability. While Logistic fidelity assigns larger
weights to inliers and smaller weights to outliers within the
bound [0, 1], it has two undetermined parameters β and θ
that require exhausting fine-tuning procedure. Moreover, it is
unreasonable to assign equivalent weights to the uncorrupted
features since different active pixels may contribute differently
to the final classification results. Our proposed w also assigns
small weights to large residuals for noises suppression, while it
assigns significant weights to small ones for features ranking.

Fig. 2. Typical weight w for loss fidelity.

Furthermore, the analytical solution of (13) has only one
tunable parameter k that has specific physical meaning, i.e., the
number of nonzero weights, and it is easier to set than the two
parameters in Logistic fidelity.

B. Weighted Nonconvex Low-Rank Constraint

Inspired by SpLq [27] and RMR [28], in this section,
we present a new low-rank regularizer, named WN2M, for
structure the mining subproblem with respect to the second
term in criterion (2). The proposed weighted nonconvex norm
of residual matrix E ∈ Ro×q is defined as

�E�s,g =
ν∑

i=1

sig(σi) (14)

where s = [s1, . . ., sν]T is the vector of nonnegative weights,
and g(·) is a continuous, concave, and nondecreasing function
for better approximation of the rank constraint. Table I
shows several well-known nonconvex surrogate functions
g, including lp quasi norm (0 < p < 1) [27], Logarithm
[38], minimax concave penalty [39], exponential type penalty
[40], Geman [41], Laplace [42], and LogExp [43], as well
as their first supergradients. Numerical studies [33], [41]
have demonstrated that the nonconvex surrogates usually
outperform their convex counterparts in the field of error
correction and image recovery.

Under (14), our low-rank approximation aims to find an
appropriate matrix E, which provides the closest approxima-
tion of a given intermediate matrix G in the sense of the
Frobenius norm fidelity, that is

E = arg min
E

1

2
�E − G�2

F + �E�s,g. (15)

In (15), the integration of weighted scheme and nonconvex
norm makes the problem more challenging than that only one
of them is considered. As discussed in [44], the problem
of nonconvex Schatten p-norm relaxation can be directly
decomposed into several independent subproblems. However,
the resulting solution may not fit (15) due to the general
nonconvex function and the newly added weights. To achieve
feasible problem decomposition, Lemma 1 is introduced first
(all the proofs of the lemmas and theorems are provided in
the Appendixes).

Lemma 1: Given the SVD of G as G = U�VT, where
the singular values are {σi , i = 1, 2, . . . , ν}, then the optimal
solution of (15) will be E = U�VT with � = diag{δi ,
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TABLE I

WELL-KNOWN NONCONVEX SURROGATE FUNCTIONS AND THEIR FIRST SUPERGRADIENTS

i = 1, 2, . . . , ν}, where δi is solved by the following problem:⎧⎪⎨
⎪⎩

min
δ

ν∑
i=1

(
1

2
(δi − σi)

2 + sig(δi)

)

s.t. δi ≥ 0 and δi ≥ δj, for i ≤ j.

(16)

Lemma 1 can be considered as the intermediate step of
problem conversion. However, it is still very challenging to
solve problem (16) due to the nonnegative (δi ≥ 0) and order
(δi > δj, i < j) constraints. Intuitively, if these two conditions
can be discarded, then problem (16) would be solved in a
parallel manner with respect to

min fi(δ) = 1

2
(δi − σi)

2 + sig(δi), i = 1, . . . , ν. (17)

Taking lp, Logarithm, and Geman functions listed in Table I
for example, Fig. 3 illustrates the function fi(δ) with varying
σ and s. The weights s are set in nondescending order as
{0.8, 1.5, 2.5, 2.5, 2.5} corresponding to {σi, i = 1, . . . , 5}.
Since the solution to (17) is in the range of [0, σ ] for σ > 0
and [σ , 0] for σ < 0 [44], without loss of generality, we only
take the case σ > 0 for consideration. As shown in Fig. 3,
for all the nonconvex functions in Table I with fixed μ and p,
there exists a certain threshold sequence τ . When σi < τi,
the minimum of function fi(δ) is located at δi = 0. Otherwise,
a specific positive δi would be optimal for the minimal fi(δ).
From the blue lines with two square marks and according
to [44], a correct thresholding τi and the corresponding δ∗

i can
be determined by letting fi(δ) equal to fi(0), that is

1

2

(
δ∗

i − τi
)2 + sig

(
δ∗

i

) = 1

2
τ 2

i (18)

from which we can get

sig
(
δ∗

i

) = 1

2
δ∗2

i + siδ
∗
i g�(δ∗

i

)
(19)

τi = δ∗
i + sig

�(δ∗
i

)
(20)

where g� is the first supergradient of the detailed selection of
nonconvex function g in Table I. With the determined τi and
σi, fi(δ) has the unique minimum that satisfies

δi − σi + sig
�(δi) = 0 (21)

Algorithm 1 WN2M Complexity
Input: G, s, tm, where tm denotes the terminal index.
Output: the optimal E
1. G = U�VT with � = diag{σi, i = 1, 2, . . . , ν};

O(oqmin(o, q))
2. Solve (20) and (21) to obtain τ . O(ν)
3. Let δi = 0, for all the |σi| < τi;
4. Let δ0

i = |σi| all the |σi| ≥ τi, then conduct step 6 in
parallel;
5. for k = 1, . . . , tm do
6. δk

i = |σi| − sig�(δk−1
i ) O(ν)

7. k = k + 1;
8. end
9. δi = sgn(σi)δ

tm
i ;

10. � = diag{δi, i = 1, 2, . . . , ν};
11. Return E = U�VT

in the range of (δ∗,∞) for σi ∈ (τi,∞).
To sum up, we present WN2M in Algorithm 1 for solving

subproblem (15), which involves two main issues: the achieve-
ment of threshold τ and the fast searching of the optimal
solution E.

We now return to cope with the nonnegative and order
constraints. Borrowing the idea of [44], the nonnegative con-
dition is naturally satisfied when no weights are encountered.
Unfortunately, the solutions of the decoupled fi(δ) may not
satisfy the order constraint when weights occur. From the red
lines and the minimum circles in Fig. 3, we further hypothesize
that the order constraint can be naturally satisfied when s
being a nondescending sequence. To confirm this hypothesis,
we present Theorem 1 as follows.

Theorem 1: Given the weights s satisfying 0 ≤ s1 ≤
s2, . . . ,≤ sν , the optimal solutions δ of the decoupled sub-
problems in (17) have the same nonascending order as σ .

According to Theorem 1, we implement Algorithm 1 with
s in the nondescending order. Generally, the singular values of
an image matrix are always sorted in the descending order, and
the larger singular values usually correspond to the subspaces
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Fig. 3. Typical nonconvex functions of fi(δ) with different s and σ . (a) lp function with μ = 1 and p = 0.6. (b) Logarithm function with μ = 1 and
γ = 1.6. (c) Geman function with μ = 1 and γ = 0.4.

of more important components. The nondescending order is
significant for the practical FI problem since the pixels with
larger rank components should be penalized less than the
remainder pixels, and therefore, the maintenance of dominant
image information would be guaranteed.

We update weight vector as s = g�(σ ) in this paper. Taking
one face image from Extended Yale B (ExYaleB) occluded
with 80% black block as the example, Fig. 4 illustrates the
reconstructed faces and learned singular values by different
methods. Fig. 4(a) and (b) are the original and occluded
images, while Fig. 4(c)–(f) are the reconstructed images
from NMR with nuclear norm, SpLq with Schatten p-norm,
RMR with weighted nuclear norm, and WN2M with the mixed
norm, respectively. It can be seen that WN2M obtains much
more faithful face images with the aid of both nonconvex
constraint and ascending weights. In Fig. 4(g), we use the
occluded image directly to calculate its original singular
values. The learned singular values of NMR deviate severely
from the genuine ones. SpLq performs better than NMR with
much more genuine rank components. RMR achieves even
better performance with more zero singular values produced
by the massive black coverage. However, our method still
outperforms all others, and its curve is nearly the same as
the original one.

IV. PROPOSED METHOD

In this section, the WMNR method with the relevant
optimization procedure is given; some special cases are also
discussed. To cope with contiguous and noncontiguous noises
in a more robust manner, we substitute the tailored loss
function (6) and the weighted nonconvex low-rank constraint
(14) into the unified formula (2), which leads to the cost
function of the proposed WMNR model

J (a, w) = �√We�2
2 + γ �w�2

2 + �E�s,g + λϑ(a)

s.t. wT1 = 1, wi ≥ 0, i = 1 ∼ m. (22)

A minimizer J (a, w) can be obtained by alternately updating
the weights w with a being fixed and updating the representa-
tion coefficients a with w fixed. Especially, the resulting sub-
problem of w can be solved by (13). The remaining problem
is to find an efficient iterative algorithm for updating a.

A. Optimization

In this section, we adopt the well-known ADMM [45]
method to efficiently solve the subproblem with respect to a.

Fig. 4. Comparison of various low-rank constraints. (a) Original face, (b) 80%
occluded face, as well as the reconstructed images from (c) � · �∗, (d) � · �p,
(e) �·�S,∗, and (f) �·�S,g. (g) Approximation results with x- and y-axes being
the ordered singular values and their magnitudes, respectively.

Based on our model, the cost function (22) can be reformulated
as follows:

min �√We�2
2 + �E�s,g + λϑ(a)

s.t. y − Xa = e, a = u (23)

where ϑ(a) can be any regularization term, as described in
Section II-C. According to (23), the augmented Lagrange
function Lρ is written as follows:

Lρ = �√We�2
2 + �E�s,g + λϑ(u) + zT

1 (y − Xa − e)

+zT
2 (a − u) + ρ

2

(�y − Xa − e�2
2 + �a − u�2

2

)
(24)

where ρ is the penalty parameter, and z1 and z2 are the
Lagrange multipliers. Denote l as the iteration index, and wl+1

being fixed, the update of ADMM variables goes as follows:

el+1 = arg min
e

L(e, al, z1,l, wl+1) (25a)

ul+1 = arg min
u

L(u, al, z2,l) (25b)

al+1 = arg min
a

L(a, el+1, ul+1, z1,l , z2,l) (25c)

z1,l+1 = z1,l + ρ(y − Xal+1 − el+1) (25d)

z2,l+1 = z2,l + ρ(al+1 − ul+1). (25e)

Fixing al and z1,l, (25a) can be expressed as

el+1 = arg min
e

�√We�2
2 + �E�s,g

+ρ

2

(�e − (y − Xal + z1,l/ρ�2
2)

)
. (26)

We employ a two-step optimization procedure to com-
pute el+1. In the first step, we solve the weighted loss function
with a penalty regularization term

e1
l+1 = arg min

e
�√We�2

2 + ρ

2

(�e−(y−Xal + z1,l/ρ)�2
2

)
(27)

which has an analytical solution as

e1
l+1 = (I + 2W/ρ)−1(y − Xal + z1,l/ρ) (28)
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where the first term is a diagonal matrix with respect to
the fixed W. Thus, we only need to conduct an elementwise
multiplication between the two terms in (28), which is compu-
tationally efficient. In the second step, we apply the weighted
nonconvex constraint to e1

l+1 for a desirable low-rank space as

el+1 = arg min
e

�E�s,g + ρ

2

∥∥E − E1
l+1

∥∥2
F (29)

where E1
l+1 = Mat(e1

l+1), and it can be solved efficiently by
Algorithm 1.

Fixing al and z2,l, the subproblem of ul+1, (25b), becomes

ul+1 = arg min
u

λϑ(u) + ρ

2

(�u − a − z2/ρ�2
2

)
(30)

whose solution with a different ϑ(u) is given by

ul+1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dλ/ρ(al + z2,l/ρ), l1-norm [27]

(al + z2,l/ρ)/(1 + 2λ/ρ), l2-norm

Vec(Di,λ/ρ(al + z2,l/ρ), i = 1, . . . , c), l2,1-norm [45]

λ(al + z2,l/ρ)+, nonnegative orthant [4].
(31)

Fixing el+1, ul+1, z1,l, and z2,l, the update of al+1 as given
in (25c) can be expressed as

al+1 = arg min
a

(�Xa − ga�2
2 + �a − gu||22

)
(32)

where ga = y − el+1 + z1,l/ρ and gu = u − z2,l/ρ are the two
auxiliary variables. Equation (32) has a closed-form solution

al+1 = C(XTga + gu) (33)

where C = (XTX + I)−1 can be computed in advance and
cached offline.

The implementation of WMNR is presented in Algorithm 2.
The convergence properties of ADMM algorithm and the
weights term have been comprehensively studied in [20]
and [45]. With regard to Algorithm 2, we only need to enforce
the terminal criterion for ADMM and the weights sequence as
max{�y−Xa−e�2, �a−u�2} < ε and �wt−wt−1�2/�wt−1�2 <
ε, respectively.

From the right columns of Algorithms 1 and 2, it is obvi-
ous that the computational complexity of WMNR is mainly
determined by performing SVD and the matrix multiplications.
Let t and l be the overall iterations of outer loop and inner
loops, the whole computational complexity of WMNR is
O(tl(o,qmin(o, q) + n2 + mn)).

B. Two Special Cases
Although WMNR is focusing on the compound corruption

involving both contiguous and noncontiguous noises, it has
close relation to the vector- and matrix-based approaches.
Two special cases can be derived with certain simplifica-
tions of WMNR. One special case is to eliminate step 6 of
Algorithm 2; then, WMNR reduces to a pure vector-based
method. It is worth noting that the time complexity of the
resulting method is (O(n2m + nm)), and it is lower than other
vector-based methods, such as RRC [19] and IRGSC [20].

Another special case is to reform WMNR into a robust low-
rank method by considering the contiguous noises only. In this

Algorithm 2 WMNR Complexity
Input: y, A, μ, λ, ρ, and ε.
Output: the optimal a and w.
Initialize t = 0, at = 1/n;
Repeat
1. t = t + 1;
2. Estimate the feature weights by Eq. (13); O(k)

Repeat
3. Initialize l = 0, al = at, z1,l = 0, z2,l = 0;
4. l = l + 1;
5. estimate e1

l by Eq. (28) for contiguous errors; O(mn)
6. estimate el by using Algorithm 1 for noncontiguous

errors; O(oqmin(o, q))
7. find ul with respect to different regularization term using

Eq. (31);
O(n)

8. Update al by Eq. (33); O(n2 + mn)
9. Update z1,l and z2,l by Eq. (25d) and Eq. (25e),

respectively. O(m)
Until converge

10. at = al;
Until converge

case, we discard the tailored loss function in formula (22) and
rewrite our model as

min �Mat(e)�s,g + λϑ(a)

s.t. y − Xa = e, a = u. (34)

With the elimination of steps regarding w in Algorithm 2,
problem (34) has similar optimization steps as Algorithm 1.
The only required revision lies in solving (15) with a new
intermediate matrix G = Mat(y − Xal + z1,l/ρ). We term this
version of our model as the weighted nonconvex norm regres-
sion (WN2R) with time complexity O(l(oqmin(o, q) + n2 +
mn)), which is comparable with the reported computational
complexity of NMR [24], SpLq [27], and RMR [28].

C. Identification Scheme

Borrowing the ideas from both of RRC and SpLq, we jointly
use the weighted Frobenius and nonconvex low-rank norm as
a robust metric for the practical FI problem. Given the optimal
a and the dictionary samples X1, X2, . . ., Xc from different
subjects, the approximated image y� can be represented as
y� = X1a1 + X2a2+, . . . ,+Xcac. Let �i be the characteristic
function that selects the coefficients affiliated to the ith class.
One can get the corresponding class reconstruction error as

ei(y) = �√W(y� − X(�i(a)))�2 + �Mat(y� − X(�i(a)))�s,g

(35)

where W, a, and s are all the learned solution from Algo-
rithm 2. The final decision rule is

identity(y) = arg min
i

ei(y). (36)
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TABLE II

SETUP OF THE TRAVERSED PARAMETERS IN THE EXPERIMENTS

V. EXPERIMENTAL AND DISCUSSION

Five benchmark face image databases, namely, the CMU
PIE face database,1 the AR database,2 the ExYaleB data-
base,3 the LFW database,4 and the PubFig database [46], are
selected to evaluate the effectiveness and robustness of our
proposed methods. Several recently proposed regression-based
approaches, including RRC, IRGSC, NMR, NR, and RMR, are
used for comparisons. RRC and IRGSC are the vector-based
methods, which preprocess each face sample as a column
vector by connecting corresponding gray intensities in series.
For RRC, the l1-norm regularization is used since it performs
relatively better than the l2-norm. The other three methods are
matrix-based classifiers, which directly take the gray faces as
input samples. To generate the best identification rate, Table II
shows the parameter setups for all competing methods. All
experiments are implemented in MATLAB R2014a on a PC
with 3.0-GHz CPU and 12-GB RAM.

A. FI With Pose Variations
We first employ the CMU PIE face database to validate

the performance of WMNR in FI with pose variations (PVs).
The whole PIE database contains 68 subjects with 41 368 face
images. All the images are captured under varying poses,
illuminations, and expressions. In our experiment, the five
different poses (pose05, pose07, pose09, pose27, and pose29)
under different illuminations and expressions are used. The
images are all manually aligned and cropped to be 64 ×
64 with 256 gray levels. In this subset, the 3329 near frontal
images from pose27 are used as the training set, and the
remaining samples are used for testing. Some face images of
one subject with different illuminations and expressions are
shown in Fig. 5. Table III lists the identification accuracy
of seven competing methods under different PVs. It can be
observed that the vector-based methods achieve higher accu-
racy than the matrix-based methods in general. Our WMNR
algorithm outperforms most of the other compared algorithms
except for the pose07 subset, in which RRC achieves the best
accuracy. Moreover, our WN2R algorithm achieves the best
identification rate among all the matrix-based methods.

B. FI With Random Corruptions
In this section, we design three experiments to inves-

tigate the robustness of our proposed methods in dealing
with different levels of contiguous and noncontiguous noises,

1https://www.ri.cmu.edu/publications/the-cmu-pose-illumination-and-
expression-pie-database-of-human-faces

2http://www2.ece.ohio-state.edu/∼aleix/ARdatabase.html
3http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
4http://vis-www.cs.umass.edu/lfw

Fig. 5. Some samples in PIE database. (a) pose05. (b) pose07. (c) pose09.
(d) pose27. (e) pose29.

TABLE III

PERFORMANCE COMPARISONS (%) UNDER PVs ON PIE DATABASE
(BOLD AND ITALIC FONTS DENOTE THE BEST ACCURACY

AND OUR PROPOSED METHODS, RESPECTIVELY)

namely, the pixel corruption, the square block corruption,
and the nonsquare block corruption. The ExYaleB database,
which contains about 2414 frontal face images of 38 subjects,
is adopted here for evaluation. We randomly select 30 images
per subject to form the dictionary, and the rest samples are
used as the query set. All samples are equally normalized and
cropped to be with the size 64 × 50.

1) FI With Pixel Corruption: In this experiment, certain per-
centages of pixels for each test image are randomly replaced
by the uniformly distributed noises. Since all the competing
algorithms have been proved to be with desirable performance
under mild pixel corruption, we increase the corruption ratio
from 50% to 80%. The experimental results for all the com-
pared methods are listed in Table IV. The first observation
is that the matrix-based methods, i.e., NMR, NR, RMR, and
WN2R, all perform poorly in this scenario. Among them, our
WN2R achieves the highest identification rate but still lags at
least 24%, 32%, 33%, and 36%, behind other vector-based
methods under 50%, 60%, 70%, and 80% pixel corruptions,
respectively. The reason is that the noncontiguous noise lacks
of structural characteristics, which obstructs the matrix-based
methods to distinguish the noises from essential features. For
vector-based methods, IRGSC outperforms RRC under all
levels of pixel corruption, which demonstrate the superiority
of the underlying group constraint in the scenario of the
pose-fixed variations. Comparatively, WMNR lags 0.05% and
0.95% behind RRC and IRGSC, respectively, under 50% pixel
corruption but outperforms both RRC and IRGSC when the
corruption level reaches more than 50%. Specifically, the aver-
age improvement of WMNR over IRGSC is accurately 4.06%.

2) FI With Square Block Corruption: In this experiment,
each query sample is corrupted by a randomly located square
block of a pure black or baboon image with varying occlusion
levels. The experimental results under compared methods are
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Fig. 6. Identification rates (%) of RRC, IRGSC, NMR, NR, RMR, WN2R, and WMNR, under different levels of (a) black block and (b) baboon block
occlusions.

TABLE IV

PERFORMANCE COMPARISONS (%) UNDER DIFFERENT LEVELS

OF PIXEL CORRUPTION ON EXYALEB DATABASE (BOLD AND

ITALIC FONTS DENOTE THE BEST ACCURACY AND
OUR PROPOSED METHODS, RESPECTIVELY)

summarized in Fig. 6. The images on top of Fig. 6 illustrate the
occlusion levels varying from 30% to 80% percentages. From
Fig. 6, we can see that RRC and IRGSC underperform NMR,
NR, RMR, and WN2R in these two scenarios. It is reasonable
from theoretical analysis that the low-rank constraint excels at
mining the structural information. In Fig. 6(a), WN2R ranks
first under the black block occlusion due to the clear low-
rank characteristics. From the results in Fig. 6(b), we find out
that all methods, except WMNR, perform poorer when the
baboon is used. We attribute this to the fact that the baboon
object exhibits more similar features as the face than the pure
black block does. Thus, it is much more challenging for the
compared methods to distinguish the inliers from outliers.

3) FI With Nonsquare Block Corruption: In the third
experiment, we consider two different nonsquare objects to
occlude the query images, as shown in Fig. 7. Similar to the
previous experiment, block occlusion is evaluated by placing
the nonsquare images (rose and vase) on each test image.
The location of the occlusion is randomly positioned and is
unknown during testing. We consider different percentages
that the images being covered by the occluded object from
50% to 90%. Average identification rates of ten runs for the
different levels of rose and vase occlusions (VOs) are shown
in Tables V and VI, respectively.

From Fig. 7, it is clear that the actual coverage area for both
cases with nonsquare images is smaller than that in the square
block scenarios. Consequently, the identification rates of all the
competing methods are relatively higher than those of square
images under the same occlusion percentage. Furthermore,

Fig. 7. Two images, rose and vase, used for (a) 50%, (b) 60%, (c) 70%,
(d) 80%, and (e) 90% nonsquare block occlusion.

TABLE V

PERFORMANCE COMPARISONS (%) UNDER DIFFERENT LEVELS OF RO ON

EXYALEB DATABASE (BOLD AND ITALIC FONTS DENOTE THE BEST

ACCURACY AND OUR PROPOSED METHODS, RESPECTIVELY)

TABLE VI

PERFORMANCE COMPARISONS (%) UNDER DIFFERENT LEVELS OF VO ON
EXYALEB DATABASE (BOLD AND ITALIC FONTS DENOTE THE BEST

ACCURACY AND OUR PROPOSED METHODS, RESPECTIVELY)

from Tables V and VI, we can see that all methods perform
better when the rose image occurs. We attribute this to the
fact that the vase object exhibits more textures than the rose
does and confuses with the real facial features, which makes
FI more difficult. RRC and IRGSC achieve desirable accuracy
when the occlusion percentage is lower than 70%. However,
their identification rates drop sharply when the coverage
percent is up to 80%. It can be seen from Table V that the
accuracy of RRC is 98.82% and 16.47% when the occlusion
rates are 50% and 90%, respectively. This is because a larger
coverage rate leads to more structural noises, while the vector-

Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on July 27,2020 at 11:20:28 UTC from IEEE Xplore.  Restrictions apply. 



3798 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019

TABLE VII

PERFORMANCE COMPARISONS (%) ON AR DATABASE WITH TWO
DIFFERENT DISGUISES (BOLD AND ITALIC FONTS DENOTE

THE BEST ACCURACY AND OUR PROPOSED

METHODS, RESPECTIVELY)

based methods are not adept at this type of corruption. Com-
paratively, the performances of NMR, NR, RMR, and WN2R
are good when the occlusion level becomes higher, but these
matrix-based methods show no advantages when the occlusion
level is relative low. Our WMNR occupies the best identifica-
tion rate in most experimental results, as shown in Tables V
and VI, and the gap gets larger as the occlusion rate gets
higher. This demonstrates that WMNR is more robust than the
others for FI under various types of contiguous occlusions.

C. FI With Real Disguise
In this section, we evaluate the robustness of our methods

with real disguise in two scenarios: 1) faces with sunglasses
and 2) faces with scarves. In addition, we would like to test
the proposed methods in cases, where few training samples
are available per subject and the query samples are with
variations of illumination and longer data acquisition interval.
Thus, 400 neutral images with nonoccluded frontal views in
session 1 from the AR database are used as the dictionary,
while the disguised images from sessions 1 and 2 are used for
testing. Table VII lists the results by competing methods under
the image resolution of 42 ×30. Interestingly, the two famous
matrix-based methods, NMR and NR, which claim to be
robust to continuous noise, perform poorly in this experiment
due to the limited training samples and severe illumination
changes. RMR and WN2R achieve better identification rate,
which demonstrate the superiority by unequally treatment
of singular values and nonconvex constraint. RRC and
IRGSC outperform RMR and WN2R, benefiting from their
reweighting mechanism. WMNR takes all the preferable
properties mentioned earlier into consideration and obtains
the best identification rate.

D. FI With Mixed Corruption

In this experiment, we test the performance of our methods
for the case of mixture noise. In this case, both pixel corruption
and block occlusion degrade the query images from the
ExYaleB and PIE databases. The basic experimental settings
are similar as Sections V-A and V-B. Each test image from
ExYaleB database is corrupted by noises following the uniform
distribution, and the percentages of those randomly chosen
noise pixels are from 10% to 60%. Then, we place the occlu-
sion image on each corrupted test image. With the PIE data
set, experiments are conducted with 40% pixel corruption and

Fig. 8. Some samples with mixture noise (from 10% to 60%) on ExYaleB
database.

Fig. 9. Some samples with 40% mixture noise and PVs on PIE database.

VO. Some example query images with this degradation from
ExYaleB and PIE are shown in Figs. 8 and 9, respectively.

Fig. 10 and Table VIII list the experimental results of all
competing methods on ExYaleB and PIE database, respec-
tively. It can be seen that WN2R consistently achieves better
accuracy compared to RMR, NMR, and NR, which demon-
strates that the joint reweighting and nonconvex constraint
generally results in a closer approximation of the intrinsic rank
function than just using one of these two tricks. Nevertheless,
all the matrix-based methods clearly perform poorer than the
vector-based ones. This is because, the advantages of NMR,
NR, RMR, and WN2R are structure mining and low-rank
approximation, which indicates that the matrix-based methods
are more effective when dealing with the contiguous noises.
However, it can be seen from Figs. 8 and 9 that the noncon-
tiguous noise is dominant in the query images. On the contrary,
the vector-based methods performs better with respect to the
noncontiguous noises, and among those methods, our WMNR
effectively combines the merits of matrix operation and feature
learning, which yields better identification rate compared to
the IRGSC and RRC.

E. FI With Uncontrolled Setting
The face images used in the aforementioned experiments

are all captured in a controlled environment. In this section,
we further test our methods in two uncontrolled databases: the
LFW database and the PubFig database. LFW contains the
images of 5749 different subjects. We gather the subjects that
contain more than ten samples and then get a data set with
158 subjects from LFW-a, a revised version of LFW [47].
For each subject, five samples are randomly selected for
training and another five samples for testing. The images
are all cropped and resized to 32 × 32. On the PubFig data
set, we follow the same experiment setting as in [20] and
[28]; 20 images for each individual are randomly selected,
and in total, 100 subjects are chosen for our experiments,
each image is resized to 64 × 64 pixels. Ten images for each
subject are used as dictionary images, and the rest are used as
test set.

Table IX exhibits the identification results of all competing
methods on these two databases. Our first observation is that
the accuracy of all these regression-based methods is not com-
parable with the human-level performance. However, WMNR
still ranks first in these challenging settings. Although IRGSC
obtains identical identification rate in LFW, it lags behind
our WMNR by 3.1% in PubFig. Moreover, WN2R occupies
the first place among the matrix-based methods, which again
verifies the superiority of our proposed reweighting scheme.
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Fig. 10. Identification rates (%) under different levels of mixture corruption on ExYaleB database. (a) Black block. (b) Baboon. (c) Rose. (d) Vase.

TABLE VIII

PERFORMANCE COMPARISONS (%) UNDER 40% PERCENTAGE OF MC
ON PIE DATABASE (BOLD AND ITALIC FONTS DENOTE THE BEST

ACCURACY AND OUR PROPOSED METHODS, RESPECTIVELY)

TABLE IX

PERFORMANCE COMPARISONS (%) ON THE LFW AND PUBFIG

DATABASES (BOLD AND ITALIC FONTS DENOTE
THE BEST ACCURACY AND OUR PROPOSED

METHODS, RESPECTIVELY)

F. Behaviors of Feature Weights and Nonconvex Constraint

We discuss the impact of feature weights and nonconvex
constraint on the identification performance in this section.
First of all, it is necessary to verify whether the learned feature
weights distinguish the inliers and outliers as we expected.
Fig. 11 shows the behavior of feature weights for IRGSC,
RRC, and WMNR under different types of corruption. The
first row lists the query samples. The second to the fourth
rows are the estimated weight maps for IRGSC, RRC, and
WMNR, respectively, where black values (near to zero) repre-
sent detected outliers by the competing methods. We observe
that WMNR works better than IRGSC and RRC. For block
occlusion, WMNR detects the outlier objects more accurately.
Most of the black regions in the weight maps are concentrated
on the occluded area. IRGSC and RRC also detect the right

Fig. 11. Estimated weight maps under (a) pixel corruption, block occlusion
with (b) black block, (c) baboon, (d) rose, or (e) vase, and pixel corruption
mixed with (f) black, (g) baboon, (h) rose, or (i) VO.

Fig. 12. Recognition rates with different nonconvex functions on a different
database.

occlusion area, but they identify a number of inlier pixels
as outliers. Similarly for mixture corruption, IRGSC and
RRC assign too many small weights to the unoccluded area.
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Fig. 13. Performance of all the competing methods under different image sizes on the ExYaleB database. (a) Identification rate. (b) Average running time
per sample.

TABLE X

RUNTIME (IN SECONDS) OF COMPETING METHODS ON DIFFERENT
DATABASES AND EXPERIMENTAL SCENARIOS

The reason for this is that there is no spatial correlation
constraint among the weights within IRGSC and RRC.

As discussed in Section II-B, we mainly focus on the
nonconvex functions listed in Table I. For highlighting the
importance of different nonconvex functions to our WN2R
methods, in this section, we conduct four experiments using
the images from PIE pose07, ExYaleB with 80% black block
occlusion, AR sunglass in session 2, and uncontrolled LFW
data set, respectively. Fig. 12 lists the experimental results with
different nonconvex functions on these four experiments. From
Fig. 12, one can observe that different nonconvex constraints
lead to comparable, but not so close, identification rates. The
lp nonconvex function obtains the best results in PIE database.
However, the Geman constraint ranks first in other three
experiments. These results prove that we can further improve
our proposed methods by fine-tuning the surrogate function.
However, the theoretical explanation of which constraint may
lead to the best performance is still under investigation.

G. Comparison Analysis of Runtime
Apart from accuracy, computational cost is another impor-

tant performance indicator for the proposed classifiers. In this
section, we compare our methods, i.e., WN2R and WMNR,
with other competing ones under different applications.
Table X lists the average running time of identifying one
query sample on five databases and several practical scenar-
ios, including the PIE database with PV and mixed corrup-
tion (MC), the ExYaleB database with random corruption, rose
occlusion (RO), VO, as well as the AR, LFW, and PubFig
databases. All the experimental settings follow those given in
Sections V-A–V-E.

From Table X, our first observation is that all the matrix-
based methods clearly achieve better efficiency than the

vector-based methods. Combining with the accuracy results
listed in the previous experiments, our WN2R algorithm not
only achieves the best identification rate among all the matrix-
based methods but also occupies the first place in terms of
computational efficiency. Although the efficiency of RMR is
very close to WN2R, it is behind our method clearly in terms
of accuracy. Recall that the accuracy of RRC and IRGSC
outperforms the results generated by the matrix-based methods
in most tests expect for the block occlusion scenario. One can
say that the vector-based methods sacrifice more runtime for
better effectiveness. With regard to this viewpoint, our WMNR
method takes the merits from both the vector- and matrix-
based methods and achieves an appealing tradeoff between
the runtime and accuracy. We can see that its accuracy ranks
first in most experiments and also consumes much less runtime
than RRC and IRGSC.

To further evaluate the efficiency of WN2R and WMNR,
we test all the methods on the ExYaleB database with
different image sizes and without any manual corruption.
Fig. 13 illustrates the experimental results under image
resolutions 29 × 25, 39 × 34, 54 × 47, 64 × 50, 76 × 67, and
96 × 84. From this Fig. 13, we can see that all the competing
methods achieve desirable and similar accuracy in the clear
environment. However, NR and RMR still underperform other
methods due to their coarse approximation to the essential
rank function. In terms of efficiency, all the compared
methods cost more runtime along with the increasing of the
image sizes. Specifically, WMNR is much more efficient
than the pure vector-based methods and slightly slower than
the pure matrix-based methods. Moreover, WN2R and RMR
share the first place among all the matrix-based methods.

VI. CONCLUSION

In this paper, we present a general formulation to deal
with the mixture image corruption, i.e., the concurrence of
noncontiguous and contiguous noises. A novel mixed-norm
constrained regression model, named WMNR, is proposed,
which provides two merits. The first tackles the noncontiguous
noises with uncertain distributions into a feature weighted
loss function. The second characterizes the contiguous resid-
ual image as a low-rank problem under the constraints of
general the nonconvex functions and ordered rank weights.
A computationally efficient optimization scheme with respect
to the WMNR model is derived. In such scheme, by proper
problem decomposition, certain analytical solutions to some
of the resulting subproblems can be obtained, and a new
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reweighted ADMM algorithm is provided to handle the rest in
a parallel computation manner. Moreover, two special cases of
WMNR are naturally deduced to manage the scenarios, where
single kind of noise occurs. One is designed for noncontiguous
noises only. It has the similar cost function as two well-known
vector-based approaches, i.e., RRC and IRGSC, but is with
much less computational cost from the theoretical point of
view. The other one, named WN2R, is designed especially
for contiguous noises and can be considered as an extension
to the existing matrix-based methods. Extensive experimental
results verify that the presented methods are more robust
to PV, pixel corruption, block occlusion, real disguise, and
mixture noises compared to the state-of-the-art regression-
based approaches for FI problem. We also empirically show
that WMNR achieves well balance of the performance and the
computational complexity, i.e., WMNR obtains much higher
accuracy and compatible efficiency with respect to the pure
matrix-based methods, whereas it requires much less runtime
to achieve better or similar performance with respect to the
pure vector-based methods.

There are still some issues that deserve our further
investigation. On one hand, although a direct application
of CNN or its variants into small data problem may not
ensure favorable results, we can borrow the convolutional
idea to replace our linear representation operation for richer
feature information [47]. On the other hand, the full SVD
step in WN2M takes O(oqmin(o, q)) time complexity at each
iteration, which is expensive on large matrices. An online
or partial SVD computation will greatly enrich our model’s
applicability to high-resolution image.

APPENDIX A
NOTATIONS

Unless specified otherwise, throughout this paper, the cap-
ital bold and lowercase bold symbols are used to represent
matrices and vectors, respectively. For any matrix B, bi is the
ith column of B and bij is the jth element in bi. BT and tr(B)
denote the transpose and trace of the matrix B, respectively.
1 denotes the vector with all entries being 1. Some notations
and abbreviations frequently used throughout this paper are
given in the Nomenclature section.

APPENDIX B
PROOF OF LEMMA 1

Assume E = Q�BT is the optimal solution of (15), whose
singular values arrange in the descending order as given by �.
According to the trace inequality of John von Neumann [48]
tr(EG) ≤ ∑ν

i=1 δiσi, we have

�E − G�2
F = tr(�T �) + tr(�T �) − 2tr(ETG)

≥ tr(�T �) + tr(�T � − 2tr(�T �) = �� − ��2
F.

(37)

This leads to
1

2
�E − G�2

F + tr(Sg(�)) ≥ 1

2
�� − ��2

F + tr(Sg(�)). (38)

Note that when B = V and Q = U, the equality of (37) holds
according to the von Neumann theorem. Thus minimizing (15)
can be reduced to problem (16).

APPENDIX C
PROOF OF THEOREM 1

From (20), we can see that τi is a monotonically increasing
function with regard to si. Given a fixed σ and any two
weights with si ≤ sj, we describe our analysis in three
different situations.

When σ ≤ τ (si) and σ ≤ τ (sj), we have δi(si) = δj(sj) = 0;
when σ > τ(si) and σ ≤ τ (sj), we have δj(sj) = 0 and
δi(si) > 0. Furthermore, when σ > τ(si) and σ > τ(sj),
we refer to Algorithm 1 for revealing the sequence of δj(sj)
and δi(si). Initially, we have δi(si) = δj(sj) = |σ |, and then,
they are iteratively updated by δk = |σ |−sg�(δk−1). Since g is
a concave nondecreasing function and si ≤ sj, we can obtain
that δtm

i (si) ≥ δtm
j (sj). In conclusion, considering δ(σ, s) as an

implicit function with respect to σ and s, we have δi(si) ≥
δj(sj), and si ≤ sj holds for a fixed σ . On the other hand,
for a fixed s, it has been proven in [49] that δi(σi) ≥ δj(σj),
σi ≥ σj. These two inequalities lead to δi(σi, si) ≥ δj(σj, sj)
for σi ≥ σj, si ≤ sj, and i ≤ j.
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