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Abstract— The year of 2017 for the 50th anniversary of the
Turing Award, which represents the top-level award in the
computer science field, is a milestone. We study the long-term
evolution of the Turing Award Collaboration Network, and it
can be considered as a microcosm of the computer science field
from 1974 to 2016. First, scholars tend to publish articles by
themselves at the early stages, and they began to focus on
tight collaboration since the late 1980s. Second, compared with
the same scale random network, although the Turing Award
Collaboration Network has small-world properties, it is not a
scale-free network. The reason may be that the number of
collaborators per scholar is limited. It is impossible for scholars
to connect to others freely (preferential attachment) as the scale-
free network. Third, to measure how far a scholar is from the
Turing Award, we propose a metric called the Turing Number
(TN) and find that the TN decreases gradually over time.
Meanwhile, we discover the phenomenon that scholars prefer
to gather into groups to do research with the development of
computer science. This article presents a new way to explore
the evolution of academic collaboration network in the field of
computer science by building and analyzing the Turing Award
Collaboration Network for decades.

Index Terms— Bibliometric-level metrics, network dynamics,
network-level metrics, Turing Award Collaboration Network,
Turing Number (TN).

I. INTRODUCTION

COMPUTER science is a diverse field full of academic
activities, including plenty of partitions. There are many

prizes to commemorate computer scientists who have made
outstanding contributions to the computer science field. The
ACM A. M Turing Award, established by the Computer
Society (ACM), was awarded the title of Nobel Prize in the
Computer Field and has far-reaching implications [1]. It is
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meaningful to study computer science from the perspective
of the Turing Award. However, compared to the Nobel Prize,
the research of the Turing Award is relatively incomprehen-
sive. There exist several works devoted to studying relevant
attributes of the Nobel Prize [2] and the Nobel Prize laure-
ates [3], while the research of the Turing Award is particularly
rare. As the highest prize in the field of computer science,
we believe that the analysis of the Turing Award can highlight
the important contributions of the Turing Award laureates. It is
also beneficial to motivate the younger generation of computer
scientists to fulfill their values [4], [5].

In order to analyze the Turing Award, we propose to
study the collaboration network related to the Turing Award
laureates. The study of scientific collaboration networks helps
us to further understand knowledge production and innova-
tion. Scientific collaboration networks have received growing
attention in recent years [6]. Scientific collaboration is a key
approach to promote the progress of computer science because
it can gather data and resources to boost the collaborative
development of knowledge production. The collaboration net-
work is built from the list of published articles by treating the
authors as connecting nodes if scholars write one or more
articles jointly. In the view of a collaborative point, these
networks have revealed some patterns of collaboration and
research behaviors in different areas [6], [7].

In addition to the field of computer science, there is an
important way to analyze collaborative networks. In the field
of mathematics, scholars can adopt the Erdös Number (EN)
to measure the distance from any mathematician to the far-
reaching mathematician through a series of coauthors. It sig-
nifies mathematicians’ nearness to the great scientist Erdös.
Afterward, some authors analyze the pattern of the Erdös
collaboration graph [8]. Inspirationally, we intend to form a
collaboration network of the top-level authors of computer
science to analyze the evolution process of the collaboration
network. However, in the era of Turing, scientists are not
as collaborative as current scholars. Based on the existing
digital library, it is found that Turing had no collaborators on
publishing articles so that no one can connect to him directly
in the collaboration network. Therefore, we attempt to find
a similar and alternative scientist. It is difficult to measure
and find the most prestigious scientist in computer science.
To this end, we can consider the Turing Award laureates as
an alternative approach. We present the Turing Number (TN)
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to measure the distance of a given scholar to the Turing
Award laureates in the network. Unlike the first two metrics,
the apparent difference of our proposed metric is that we
measure the distance from a certain scholar to the group of
the Turing Award laureates, while the first two metrics are the
distances to a specific person.

One of the most popular methods for analyzing network
evolution is the bibliometric-level approach, which focuses on
the quantitative and qualitative results of scientific research
activities. The analysis of the bibliometric-level approach is
usually based on measurable descriptions of scientific out-
comes, including authorship, publications, and citations [9].
Subsequently, it has collected collaborative data to explore
complex structures of contact in various fields.

The network-level analysis, extensively applied in collab-
oration network analysis, is another widely used method
for researching the network [10]. Many studies propose
several network-level metrics [11], such as the measure of
degree, variety of centrality, and diameter. Some studies
focus on describing structural properties through metrics,
e.g., clustering coefficient [12], while others explore more
complex problems to analyze, such as the detection of
community hubs [13] and the determination of the priority
attachment mechanism [14], [15]. Some authors attempt to
identify the structure of small world [16] or the property
of scale-free [17]. Others propose new measures to assess
the scientific collaboration [18]. Some articles have studied
scientific collaborations, with a focus on network changes over
time [19], [20]. In contrast, this article focuses on the col-
laborative network of the top authors in computer science
rather than the general computer science collaboration net-
work. Currently, there are many studies focused on computer
science [21]–[24]. Recently, a specific group (top active) col-
laboration [23] is investigated in the field of computer science.
However, there are few studies focusing on Turing Award
laureates. Our results show the same conclusion in some
respects and the details are introduced in Sections III and IV.

In this article, we characterize the network evolution in
computer science. First, we regard all the Turing Award
laureates as a group to establish the network called the Turing
Award Collaboration Network. It is our aim to comprehend the
structure of the entire computer science collaboration network.
Then, we analyze the dynamics over a long-time period
(42 years). Moreover, we intend to discover the correlation
of the distance to Turing Award (TN) and other considered
metrics. To achieve this goal, we adopt the data from the
open source of the database systems and logic programming
(DBLP) to incorporate the article information into the across-
the-board collection of evolved network data. We also conduct
many in-depth statistical analyses.

Based on the metrics of bibliometric levels, the develop-
ment of computer science is abstracted into a collaborative
evolutionary network centered on Turing Award laureates. The
network evolution is described at both the bibliometric level
and network level. In addition, we compare calculated metrics
with the same-scale random network to eliminate the impact
of network dimensions.

Contribution: To the best of our knowledge, this article is
the early study of computer science network focused on the

Fig. 1. Structure diagram of this article.

Turing Award. The main contributions of this article are as
follows.

1) We present a new approach for establishing the collabo-
ration network in the field of computer science centering
on the Turing Award laureates.

2) We propose a metric called TN to measure the distance
between scholars and the Turing Award.

3) We provide a comprehensive analysis of the network
in conjunction with the bibliometric- and network-level
metrics.

4) Finally, we analyze the correlation between the calcu-
lated metrics and TN to explore the scholars’ properties
related to the Turing Award.

II. METHOD

In this section, we will introduce the methods used in
the research process including data acquisition, collaboration
network construction, and some analysis metrics. The overall
structure diagram of the study is shown in Fig. 1.

A. Data Acquirement

To study the evolution of the Turing Award Collaboration
Network comprehensively, we collect available DBLP data set
in public. DBLP is a literature data set of computer science
that records information in regards to global computer science
research. The personal bibliography records the scientific
achievements of a researcher in one’s career. The entire DBLP
data set is stored in an XML form, and it can be downloaded
from the website (http://dblp.uni-trier.de/xml/). The data set
contains 3 297 544 bibliographies of 1 735 884 authors from
1971 to 2016. The data involve a variety of categories, but
we only focus on journal and conference articles whose labels
are “article,” “inproceeding,” and “proceeding.” These three
categories of articles have been verified to reflect the progress
of computer science prominently [25].

To exclude those scholars who leave the academia in the
early career, for instance, fresh graduates, we screened the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KONG et al.: EVOLUTION OF TURING AWARD COLLABORATION NETWORK: BIBLIOMETRIC-LEVEL AND NETWORK-LEVEL METRICS 3

data. We remove scholars with less than five, eight, and ten
articles, respectively, and we find that they do not affect
the final result. Finally, we select to remove scholars who
published less than ten articles, gaining 2 796 297 articles and
192 650 authors. In addition, since this collaboration with
so many authors shows weak social relationships, we have
removed more than 100 coauthors’ articles [26]. If these
authors are not excluded, it would be very unreasonable for
these authors to form a fully connected graph when building
a collaboration network.

B. Turing Award Collaboration Network

When the data are obtained, we establish the collaboration
network associated with the Turing Award laureates. We regard
an author as a node and a copublished article as an edge.
The number of common publications can be measured by the
weights of links. It can cause changes in the network, mainly
because their growth involves the dynamic interaction of links
and weights, and some possible factors that can accelerate
growth [27]. The network allows new links to appear among
existing nodes. However, we focus more on the increasing
scale of the collaboration network and the distances of authors
to the Turing Award in this research, so we choose the
unweighted network, i.e., if two authors publish an article
together, there will be an edge between them.

We treat all the Turing Award laureates as a group and then
we set its number to 0. The remaining scholars are assigned
a sequence number starting from 1. If an author collaborates
with any Turing Award laureate, he/she will be considered to
be connected to the Turing Award. Intuitively, a Turing Award
laureate is added to the Turing Award group in the year he/she
won the Turing Award, while a scholar joins the network when
the scholar began publishing articles. There are one or two
laureates to join the Turing Award group each year. In addition,
we explore the evolution of the network and investigate the
rapid development of the computer science field.

Due to the marginal number of nodes in the early years,
we regard 1974 as the starting year for exploration. Since
some authors never collaborate with other authors, we ignore
the isolated nodes of the network. Due to the tiny number
of isolated nodes, it hardly affects the experimental results
by deleting isolated nodes. In other words, we only consider
the largest connected subgraph of the network. Eventually,
we obtain the maximum connected graph related to the Turing
Award group, which is named as the Turing Award Collab-
oration Network. The network is shortened as the Turing
Network in the following. Furthermore, we put each year as
a unit to establish the time-series cumulative collaboration
network separately. We also document the annual changes in
the authors’ properties and their collaborations in the Turing
Award Collaboration Network.

C. Random Network

Intuitively, many of the calculated metrics for the Turing
Award Collaboration Network are correlated with the size
of the network of the year. Therefore, the annual change in
metrics is not surprising. A more essential trend is to eliminate

the correlation of metrics and network size so as to deepen our
understanding of the internal changes of the Turing Network.
The method we choose is to compare the Turing Network to
the random network with the changes of the network’s size.
Therefore, in order to better reflect the network characteristics
and to eliminate the scale effects concurrently, we construct a
random network with the same number of nodes and edges as
the Turing Network.

We select the most classic Erdős–Rényi (ER) random net-
work [28], which is built via the number of nodes n and
edges m, G(n, m). The network is constructed by the following
steps: 1) initialize a given number of nodes n and edges m;
2) select a pair of different nodes randomly without edges
and add an edge; and 3) repeat step 2) until m edges in the
network. Through the above-mentioned method, we construct
a random network that retains the number of nodes and edges
of the Turing Award Collaboration Network. We expect to
exclude the correlation of the Turing network scale through
its equivalent random network.

In the latter part of this article, ER Random Network is used
as the experimental control group for our evaluation. The “Real
Value” mentioned in all the result diagrams in this article is
the analysis result of the Turing Award Collaboration Network
constructed by us. Meanwhile, “Random Value” refers to
the result obtained through the analysis of the ER Random
Network.

D. Analysis Method

In this article, we analyze the Turing Award Collaboration
Network by the bibliometric- and network-level methods.

1) Bibliometric-Level Metrics: To comprehensively under-
stand the authors’ outcomes and the evolution of the collabo-
ration pattern, we have selected some typical metrics widely
applied in related works [29], [30]. Common bibliometric-level
metrics are as follows.

1) Number of Authors: The metric describes the numbers
of authors who publish articles every year. We remove
scholars who published less than ten articles, eventually
obtaining 2 796 297 articles and 192 650 authors.

2) Number of Articles: This metric shows the number
of articles published every year. We have utilized the
articles from 1974 to 2016.

3) Mean Articles per Author: This metric explores the
author’s average productivity.

4) Mean Authors per Article: For this measure, we explore
the average number of authors in each article.

5) Collaboration: Here, we consider the percentage of
the different types of articles (one-, two-, three- and
multiauthored articles).

6) Collaborator: This measure is related to the percentage
of authors who tend to collaborate with others in pub-
lishing articles.

2) Network-Level Metrics: In the network-level analysis,
the Turing Award Collaboration Network is investigated based
on the macrometrics and micrometrics. The former is the
overall profile of the social network’s characteristics to display
the network, while the latter emphasizes on the assessment of
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the nodes to capture the characteristics of each node [31].
In addition, to eliminate the impact of the network scale,
we compare the metrics of the Turing Award Collaboration
Network with metrics of the random network. The network-
level metrics that are widely used to standardize or the metrics
infer the structural aspects of the network are as follows.

1) Diameter: The given distance di j refers to the length
of the shortest path connecting the two nodes i and j .
The diameter D of the network is used to measure the
maximum eccentricity, which is the maximum distance
between any two nodes

D = max
i, j

di j . (1)

2) Density: Density is used to measure connectivity across
the network, and it is calculated by dividing the total
number of edges by the total number of possible edges
in the network with the same number of nodes. The
formula for density p is

p = E
1
2 N(N − 1)

(2)

where N is the total number of nodes and E is the
total number of edges in the network. We can adopt
network density to characterize the extent of coherency
and linkage between nodes in the network [32].

3) Average Path Length: The average shortest path length L
is the average length of the shortest path between every
two nodes in the network [33]

L = 1

N(N − 1)

∑
i �= j

di j . (3)

In the collaboration network, the distance between coau-
thors of an article is 1, while the distance between
authors who do not have direct cooperation but have
the same coauthor is 2.

4) Degree: The adjacency matrix A = (ai j )N×N of a given
graph G is an N th-order square matrix, and the element
ai j on the i th row and the j th column is defined as
follows:

ai j =
{

1, if there is an edge between node i and j

0, otherwise.

(4)

The degree ki of the node i refers to the number of
nodes linked to the node i , which is expressed as

ki =
N∑

j=1

ai j . (5)

5) Average Neighbor Degree: It measures the average
degree of neighbors for each node. The average degree
of the node i is

knn,i = 1

Num(i)

∑
j�N(i)

k j (6)

where N(i) is the set of neighbors of the node i , Num(i)
is the number of nodes in N(i), and k j is the degree of
the node j that belongs to N(i).

6) Degree Assortativity: In order to identify the relevance
of the centrality of a node to its neighbor nodes, we take
a degree assortativity or a mean nearest neighbor con-
nectivity as a metric of connection similarity [34]. It is
a measure of the degree to either end of the edge by
calculating the Pearson correlation coefficient r

r =
∑

i ki ji − M−1 ∑
i ki

∑
i ji√

[∑i k2
i −M−1(

∑
i ki )2][∑i j2

i −M−1(
∑

i ji)2]
(7)

where ki and ji are the degrees of the node for the ends
of the i th edge in the network, along with i = 1 · · · M .
The range of the coefficient r is between −1 and 1.

7) Clustering Coefficient: The clustering coefficient repre-
sents the ratio of adjacent nodes to which the nodes are
connected. By analyzing this metric, a highly aggregate
coefficient means that the local network centering on
this node is gathered together densely in a collaboration
network. Suppose the degree of node i in the network
is ki , i.e., it has ki neighbor nodes. If the ki neighbor
nodes are also neighbors, there are (ki (ki − 1)/2) edges
between these neighbors, and this is the case with the
largest number of edges. Clustering coefficient Ci of the
node i can be expressed as

Ci = 2Ei

ki (ki − 1)
(8)

where Ei actually represents the number of edges that
exist between node i and ki neighbor nodes.

8) Core: The measure of the core can identify groups that
are closely interconnected in the network [35]. Let G =
(V , E) be an undirected graph, and let H = (W, R)
be a subgraph of G, i.e., H ⊆ G. If subgraph H is a
maximal connected subgraph in which all nodes have the
degree at least K , it is defined to be a K-Core subgraph
of G. It is calculated by the following equation, in the
subgraph H for all i ∈ W :

ki∈W ≥ K . (9)

Every node i ∈ V has a core number of K , if it belongs
to a K-core but not to a (K +1)−Core. If the nodes of
the K-Core subgraph of G correspond to the maximum
value of Kmax, we denote the main core as the maximum
core number Kmax. In our network, connected nodes
are independent of the other nodes connected to nodes
existing outside the group.

9) Clique: The clique is defined as the largest set of nodes
that all nodes are directly adjacent to each other. Under
the node removal operation, a clique has an invariant
attribute: if a node is deleted from a clique, the rest of
the subgraph is still a clique. Each node contributes a
q-clique (a completely connected subgraph Q consisting
of q nodes) onto G. It indicates that each node in Q is no
more than a distance q away from others. Thus, we can
know that a clique is an interconnected component that
ensures that each author of this clique writes at least one
article with all other authors.
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10) Degree Centrality: The node v’s degree centrality is to
measure the number of other nodes that are directly
connected to the node [36]. For normalization, it is
divided by the maximum possible degree n − 1 of the
whole network. Thus, it is expressed as

CD(i) = ki

N − 1
. (10)

11) Closeness Centrality: Throughout our established net-
work, closeness centrality tends to give high values for
nodes near the network center, and high-closeness cen-
trality nodes are generally important influencers. In order
to calculate this metric, we have [36]

CC (i) = N − 1∑N
j �=i di j

. (11)

3) TN: To find hierarchical relationships of the network,
we explore relationships of the distance to the Turing Award
and the related metrics (bibliometric level and network level).
Enlightened by the previous study on the EN, we define the
metric of the TN, first proposed, to measure the distance to
the Turing Award. The explanation is as follows:

TN: The TN depicts the distance between the author and the
Turing Award, which is similar to the concept of the shortest
path distance. The TN of a Turing Award laureate is zero. For
assigning TN, someone must be the coauthor of the research
article, while another one needs to have a limited TN. Under
the circumstance of treating the Turing Award laureates as
a group, if one person’s TN is T + 1, the one’s distance
to the Turing Award is T + 1, where T is the lowest TN
of any coauthors. A TN refers to the minimum value of the
shortest path of every author to all the Turing Award laureates.
In other words, we calculate the shortest path length of each
scholar to all the Turing Award laureates, and we take the
minimum value as the TN. From the perspective of complex
networks, the shorter the value of TN, the smaller the distance
between scholars and the Turing Award laureates. Based on the
definition of TN, we extend the concept of the EN and measure
the shortest path length of a given author to any Turing Award
laureate.

We anticipate discovering correlations of authors’ produc-
tivity, position in the network, and distances to the Turing
Award.

III. RESULTS

The outstanding contribution of this article is the estab-
lishment of the Turing Award Collaboration Network and the
exploration of relevant metrics for the analysis of the network.
We explore the evolution of the network from 1974 to 2016.
The results fall into two categories: bibliometric-level and
network-level analyses.

A. Bibliometric-Level Analysis

We first focus on the most intuitive metrics: the number
of authors and articles. Fig. 2(a) shows the number of annual
authors. The embedded graph displaces a log-linear distrib-
ution plotted with the same data that match the exponential

Fig. 2. The number of authors and articles each year. (a) Evolution of the
number of authors versus year. (b) Evolution of the number of articles versus
year. Each embedded graph displaces a log-linear distribution plotted with the
same data. It indicates an exponential increase in the number of authors and
articles produced each year.

Fig. 3. Percentage of articles in each year, and mean authors per article
and articles per author in each year. (a) Distribution of authors per paper and
the annual percentage of articles published by one, two, three, and more than
three authors. (b) Mean articles per author versus year (black line) and the
mean authors per article versus year (the red line).

fitting the formula a ∗ exp(bx), where b = 0.063 and R2 =
0.94. Fig. 2(b) shows the number of articles each year and the
embedded graph displaces a log-linear distribution plotted with
the same data that matches the exponential fitting a ∗exp(bx),
where b = 0.080 and R2 = 0.97. R2 is used to describe the
extent fitting of the linear function, where the higher the value
(i.e., closer to 1), the better the fitting. We can observe that
the two metrics increase exponentially every year.

As shown in Fig. 3(a), we can observe the changes in the
collaboration pattern. In 1974, 79.3% of the authors published
their own articles, and the synergy between scholars is still
weak because only 0.8% of the articles has more than three
authors. Since then, scholars have tended to collaborate with
others to publish articles. We can observe that the average
number of authors per article has increased from 1.25 to
2.28 during the whole period in Fig. 3(b). Subsequently,
the number of articles written by individual authors continues
to increase, but its percentage has dropped from 79.3% to
less than 42.2%. In contrast, the number and the percentage
of articles with multiple authors have increased significantly.
The number of articles coauthored by the two authors is the
highest among those articles. The reason is probably that with
the rapid development of computer science, it is increasingly
difficult to publish articles alone. We can realize that it is
necessary to focus on team research.

The mean number of articles per author and authors per
article is plotted in Fig. 3(b). From 1974 to 2002, the mean
articles per author are hovering between 1.0 and 1.2 yearly.
After 2002, it shows an upward trend, till 2015 to about 1.70,
therewith following by some decline. Since the 1970s, articles’
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Fig. 4. Evolution of dimension and density. (a) Growth of nodes and
edges each year. The red line represents the trend of the node, and the
black line represents the trend of edge. (b) Density of the Turing Award
Collaboration Network compared to the random network. The blue and
red lines represent trends in the Turing Network and the random network,
respectively. (a) Dimension (nodes and edges). (b) Density.

Fig. 5. Evolution of distance metrics and clustering coefficient. (a) Trends of
network diameter, average shortest path, and TN. (b) Evolution of clustering
coefficient. The solid line indicates the evolution of the Turing Network, and
the dotted line is the evolution of the random network. (a) Different kinds of
distance metrics. (b) Clustering coefficient.

average authors have increased quickly. At present, each article
has an average of two authors.

B. Network-Level Analysis

The analysis of these network-level metrics provides
insights into the evolution of the Turing Award Collaboration
Network. Meanwhile, we compare some calculated metrics
with those in the random network to better reflect the realities.

The evolution of nodes and edges in the entire collaboration
network is shown in Fig. 4(a). It is demonstrated clearly that
due to the growing number of authors and their collaborators,
these metrics have increased notably each year.

In Fig. 4(b), we can observe the same phenomenon of
random network trends, and the density is also declining. It is
understandable that due to the increase in the number of new
scholarships, the number of publications or collaborations with
other authors is limited.

Fig. 5(a) shows the changes in diameter, which starts at 21,
and then reaches the maximum 28 in 1984. Next, it drops to
around 15 in 2016. The initial increasing of distance indicates
that the network is gradually expanding, but the subsequent
declining of the metric indicates that as the network continues
to expand, the extent of collaboration is also increasing. It has
the same tendency as the diameter of the random network,
but the values are larger, and they indicate that relationships
in this network are more complicated and dispersed than those
in the random network.

The average shortest path length is plotted in Fig. 5(a). It can
be seen that the initial network of the shortest path length

Fig. 6. Evolution of average degree. The embedded graph shows the log-
linear graph. The blue line is the trend of the Turing Network, and the red
line is the evolution of the random network.

is about 8.7 in 1974, and the path length steadily decreases
from 1974 to 2016. Furthermore, the shortest path converges
to about 4.3 at a later stage, and it indicates that a scholar in
the network requires only four or five steps to achieve another
scholar, which means that scientific information can be easily
obtained by the need of the researcher [37]. Compared with the
random network, the length is larger initially, but then it basi-
cally coincides with the random network. In accordance with
the “Six Degree Separation” theory, the network is stabilized
gradually. In addition, TN has the same trend as the average
path length. However, the value of TN is smaller, which shows
that the distance for authors to the Turing Award is shorter
than the average distance in the network. We can notice that
the value of TN differs greatly from the diameter. We deem
that the definition of TN and network diameter is different.
The former refers to the distance of any scholars to the group
of the Turing Award laureates, and the latter measures the
distance between any two scholars in the network. Due to the
difference in definition, the average of the two metrics differs
by about 20. Therefore, the diameter of the network fluctuates
relatively large.

In the Turing Award Collaboration Network, clustering
coefficient increases from 0.28 in 1974 to 0.41, as shown
in Fig. 5(b). However, it starts to decrease in 2004. Although
the number of scholars has been increasing, they are gathered
to a certain extent, not an unlimited association. This phe-
nomenon shows specifically that in the 21st century, the col-
laboration pattern becomes increasingly unified over time.
In addition, this metric is far greater than that in the random
network, which indicates that the collaboration network tends
to converge to form a high-density aggregation group.

The above-mentioned analysis shows that scholars are grad-
ually involved in tight collaboration and a large number of
scholars join the network through the collaboration. In the
dynamics of degree (see Fig. 6), we can observe that the value
is basically year-on-year rising with exactly the same trend in
this metric of the random network. This metric shows a basic
trend of linear growth and it distributes between 2 and 20.
So far, the average node degree in the network has reached 20.
The embedded graph shown in Fig. 6 displaces the logarithmic
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Fig. 7. Evolution of degree distribution. (a) Degree cumulative probability
distribution each year. (b) Log–log degree cumulative probability distribution
of the same network. Each line in both graphs represents the degree distrib-
ution of a certain year.

linearity that matches the exponential fitting a∗exp(bx), where
b = 0.020 and R2 = 0.93.

The Barabási–Albert model [38] of the scare-free network
was first proposed in 1999. The significant feature of a scale-
free network is that the degree distribution follows a power-
law distribution p(x) = cx−α, where the scale-free coefficient
(−α) is generally negative. Therefore, to explore whether the
Turing Award Collaboration Network is a scale-free network,
we need to analyze the degree distribution. We plot the degree
distribution of the Turing Award Collaboration Network at
several intervals of time points (i.e., 1974, 1979, 1984, 1989,
1994, 1999, 2004, 2009, 2014, and 2016), as shown in Fig. 7.
As a result of the degree distribution, several nodes have a
high degree. However, a large number of nodes are low. From
this point, degree distribution seems to follow the power-law
distribution essentially, especially when the dimensions of the
network (nodes and edges) are huge.

Subsequently, we plot the log–log distribution of degree
distributions for different years shown in Fig. 7(b), which
corresponds to the time points shown in Fig. 7(a). It can
be concluded that these distributions are not purely power
law; otherwise, these points roughly stay in a straight line.
In contrast, the tail of the distribution conforms to exponential
decay in 2016. In other words, the entire network cannot
be used to fit the power-law distribution. From the analysis
mentioned earlier, the Turing Award Collaboration Network
cannot be considered as a scale-free network.

The relationship among scholars depends on the number of
neighbors and their locations. In some networks, it has been
noticed that the degree of their neighbors is related to their own
degree. The degree for their neighbors is apt to be low when
their degree is low. Conversely, the neighbor’s degree is high
when their own degree is high. In the collaboration pattern,
the prevalent authors are highly associated with other popular
authors, and the less popular authors are likely to be associated
with the popular authors. We can quantify the correlation of
these degrees by analyzing the correlation between the average
neighbor degrees and their own degrees. The result is shown
in Fig. 8(a).

The solid line represents the same degree as its average
neighbor degree. From Fig. 8(a), we can discover that the
average degree of the small-degree nodes’ neighbors is signif-
icantly larger. However, with an increase of degree, the average
neighbor degree of nodes is significantly higher than their

Fig. 8. Evolution of degree correlation. (a) Correlation of degree and average
neighbor degree. Each color point refers to a certain year. The black line is the
identity line x = y. (b) Degree assortativity of the Turing Award Collaboration
Network (blue point) compared to the random network (red point).

degree. Another more accurate way is to calculate the assor-
tativity coefficient, which needs to measure the preferences of
nodes attached to other nodes in any way. The positive value
of the degree assortativity indicates the correlation among
similar-degree nodes (assortativity), while the negative value
represents the relationships among different-degree nodes (dis-
assortativity). In Fig. 8(b), the current degree assortativity of
the Turing Award Collaboration Network is 0.074, positive;
this condition indicates that the author tends to collaborate
with other authors of a similar number of collaborators.
Compared with the values in the random network, it can be
seen that the degree assortativity has been increasing steadily,
which is related to the increasing number of authors.

By analyzing the core and the clique, we can acknowledge
the evolution of the network group. The sizes of the core and
the clique are both rising each year, which also conforms
to the rule of network evolution. The value of the clique
is similar to the core’s value at the early stages, while the
clique’s growth trend is significantly higher than the core’s
later. This phenomenon shows that extensive collaboration in
the network is more prevalent than collaborating with the same
person or group.

Then, in order to inquire about the trend more clearly,
we can observe the distribution in Fig. 9. The K-Core distri-
bution of the Turing Award Collaboration Network is shown
in Fig. 9(a). With the increase of K, the distribution of K-Core
tends to be gentler. The majority of authors belong to small
K-Cores (less than nine) and 20-Core contains most of the
authors in 2016. The largest K-Core is 56 in 2016, which is
not the group of the Turing Award laureates (K-Core is 51).
The distribution of the clique is shown in Fig. 9(b), which
is similar to the K-Core. However, the value of the clique is
much greater than K-Core’s value via the magnitude of the
two pictures’ abscissa (100 versus 10). This also verifies our
thought: the Turing Award Collaboration Network tends to be
of more team collaboration (also called “baotuan” in Chinese).

Degree centrality quantifies the number of nodes connected
to other nodes. Closeness centrality evaluates whether nodes
are connected to other prominent nodes or not.

From Fig. 10, we can observe that degree centrality of the
Turing Award Collaboration Network has been decreasing over
time, and it is smaller than the values in the random network.
As the number of nodes in the network increases exponentially,
it still leads to lower degree centrality. This means that the
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Fig. 9. Evolution of core and clique distribution. (a) K-core distribution of
the Turing Network. (b) Clique distribution of the Turing Network. Each line
refers to one specific year.

Fig. 10. Evolution of degree centrality and closeness centrality. The solid
line refers to the evolution of the Turing Network, and the dotted line refers
to the evolution of the random network.

links among scientists are almost similar across the network.
It brings about the simultaneous development of opportunities
for all scientists.

Closeness centrality shows a growth trend in Fig. 10.
In contrast to degree centrality, the nodes have an increased
pattern. The slope of the curve is larger at the later stages of
the network dynamics, while the smaller slope of earlier stages
can be attributed to the preferential attachment compared with
the random network.

Because the number of nodes in the early network is small,
the newly added nodes are more likely to be attached to the
newly introduced nodes in each period. However, the added
nodes are more likely to be attached to higher nodes, resulting
in the increase of the slope of closeness centrality. This makes
the newly added nodes hard to perform on the shortest path
of the node pair during network evolution.

IV. DISCUSSION

A. Evolution of the Turing Award Collaboration Network

After analyzing the structure of the Turing Award Col-
laboration Network over the years, we proceed to observe
the evolution of the network intuitively. Therefore, we plot
the evolution of the Turing Award Collaboration Network,
as shown in Fig. 11. Because of the plentiful years involved,
we take ten years as a span to show the changes from 1974 to
1984, 1994, and 2004. As there are overmuch nodes and edges,
we only take the center of the network with the high K-Core.

From Fig. 11, we can notice that with the development of the
network, a growing number of nodes enter the network and the
new relationships of the current nodes increase. As the number
of nodes in the network increases, the connection among nodes
becomes closer. In addition, the density of the network rises
as the connections of nodes increase.

As the Turing Award laureates join the network gradually,
they not only bring mounting nodes to join but also make the
Turing Award for the network more central. Although we only
take the high K-Core of the network, we can still observe the
network’s group aggregation and close contact of the network.
Moreover, the central group is also gradually expanding. This
result can be used to predict the person who is most likely to
win the Turing Award and the new join should fit the variation
trend of the network.

B. Correlation of TN and Distinct Metrics

In order to further explore the relationship of the various
metrics and the Turing Award, we begin to analyze the impact
of different TNs on the relevant metrics. Table I shows the
evolution of TN. The time phase represents the change of the
TN from 1974 to 1979, 1984, 1994, 2004, 2009, 2014, and
2016.

1) Bibliometric-Level Metrics Relationship: We first ana-
lyze the relationship between the bibliometric-level metrics
and TN. The results are shown in Fig. 12. When TNs are 1,
2, and 3, the author’s number of articles and collaborations
are above the average. Then, both graphs demonstrate that
the smaller the TN, the larger the bibliometric-level metric.
The TN 0 in Fig. 12 is the average of all the Turing Award
laureates. It can be seen that the number of articles and
collaborations of the Turing Award laureates is no more than
that of the general scholars. Besides, scholars with the TN 2
have a higher number of collaborations and articles than
scholars’ with the TN 1 in the later period. There is an upward
trend in the growth of the network for all authors.

2) Network-Level Metrics Relationship: We analyze the
impact of TN on the network-level metrics, and the results are
shown in Fig. 13. The TN 0 in Fig. 13 is the total value of all
the Turing Award laureates, while The TN 0 in Fig. 12 is the
average. It is not appropriate for bibliometric-level metrics to
use total value. For example, if we use total value, the amount
of Turing Award laureates’ articles is tiny compared to the
rest of the authors’ articles because the total Turing Award
laureates number is tiny. Network-level metrics is based on
the collaboration network structure. The influence of Turing
Award laureates can be reflected through the network structure.
Thus, it is better to consider the total value of TN 0. We can
realize that the relationships between TN and the network-
level metrics are not exactly the same as the bibliometric-level
metrics.

The degree [see Fig. 13(a)], the core [see Fig. 13(c)], and
the clique [see Fig. 13(d)] show that the smaller the TN,
the greater the values. However, for the clustering coefficient
depicted in Fig. 13(b), the correlation with TN cannot be seen,
and there is no growth trend toward the year, which is similar
to the annual clustering coefficient shown in Fig. 5(b).
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Fig. 11. Evolution of the Turing Award Collaboration Network. (a) Turing Network of all authors in 1974. (b) Due to the large number of nodes in
Turing Network in 1984, it is not easy to observe network structure visually. Therefore, we select the five-core subnetwork of the Turing Network in 1984.
(c) Eight-Core subnetwork of the Turing Network in 1994. (d) 15-Core subnetwork of the Turing Network in 2004. Network graphs were produced in Gephi,
using the Fruchterman Reingold layout with scaling set to 5000 and gravity to 10. Node size is proportional to the authors’ degree.

TABLE I

EVOLUTION OF TN FROM 1974 TO 1979, 1984, 1994, 2004, 2009, 2014, AND 2016

Fig. 12. Annual relationship of TN and specific bibliometric-level metrics.
(a) Changes in the numbers of articles against the value of TN. (b) Changes
in the numbers of collaborations with varying the value of TN. The dotted
line indicates the average change of each metric.

In terms of centrality, closeness centrality is increasing
yearly. The smaller TN is better for closeness centrality.
However, degree centrality does not have such a strong corre-
lation. It is noteworthy that, as time goes by, the correlations of
TN and degree centrality are not large at later stages, despite
some fluctuations exist. However, the changes in the closeness
centrality are more obvious over time.

3) Correlation Coefficient: For the purpose of checking
whether existing measures are associated with TN and changes
in the subsequent years, we adopt the Spearman correlation
coefficient to calculate the relationship of the relevant metrics
and TN from 1974 to 2016 because many metrics do not
conform to the normal distribution and the nonparametric
correlations are more appropriate and more robust than the
Pearson correlations. The Spearman correlation coefficient is
defined as the Pearson correlation coefficient between rank
variables. For the samples with size n, all original data are
converted into rank data, and the correlation coefficient ρ is

expressed as

ρ =
∑

i (xi − x)(yi − y)√∑
i (xi − x)2

∑
i (yi − y)2

(12)

where the raw data are assigned a corresponding rank based
on their average descending position in the overall data. For
example, given three values, 33, 21, and 44, their rank would
be 2, 1, and 3. xi is the TN rank of the i th sample. x is the
average rank of all x . yi is the metric rank of the i th sample.
y is the average rank of all y. If y tends to increase as x
increases, the Spearman correlation is positive. If y tends to
decrease as x increases, the Spearman correlation is negative.
If Spearman correlation is 0, it indicates that y has no tendency
as x increases. As x and y get close to a complete monotonic
correlation, the Spearman correlation increases in absolute
value. When x and y are completely monotonic, the absolute
value of the Spearman correlation coefficient is 1.

Fig. 14 shows that the relevant metrics are negatively
correlated with TN except for the clustering coefficient. When
the absolute value of the correlation coefficient is closer to 1,
the metric is more correlated with TN. The trends of the vast
majority of metrics are the same with some slight increases
over years or some fluctuations. Of all the metrics, closeness
centrality is of great relevant metric (the absolute value of the
correlation coefficient is about 0.6 in 2016). There are some
declines in the middle of the periods. The second is the core.

From the above-mentioned exploration, we can understand
that the correlation of the relevant metrics and TN is always
significant over time. From the perspective of the centrality,
the correlation of the closeness centrality and TN is the high-
est. In other words, the author with a high closeness centrality
is often closer to the Turing Award. In addition, the coefficient
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Fig. 13. Relationship between TN and specific network-level metrics. Each figure shows changes of a certain network-level metric against TN. The dotted
line indicates average change of each metric. (a) Degree. (b) Clustering coefficient. (c) Core. (d) Clique. (e) Degree centrality. (f) Closeness centrality.

Fig. 14. Correlation coefficient of TN and specific metrics.

has an increasing trend yearly for degree centrality but has a
stable trend for closeness centrality.

V. CONCLUSION

The ACM A.M. Turing Award is recognized as the highest
honor prize in the realm of computer science. Half a century
has passed since the first laureate was awarded. However, there
are scarce researches to explore the potential mechanism of
the Turing Award and collaboration pattern of its laureates.
This article is the first research for the evolution of the Turing
Award Collaboration Network. In this article, we analyze the
evolution of the Turing Award Collaboration Network, which
is extracted from the journal and conference articles recorded
in DBLP from 1974 to 2016. We combine the metrics of the

bibliometric-level method and the network-level approach to
characterize the multiple attributes of the researchers.

The observations from the Turing Award Collaboration Net-
work show that collaboration at different times has different
types of strength and collaborative behavior. The number of
articles and authors on the network has grown exponentially,
indicating that the field of computer science has grown rapidly
over the past 42 years. In the early stage, scholars did not
pay attention to collaboration, so they were more inclined
to publish articles alone. Gradually, they began to focus on
collaboration so that multiple authors’ articles account for a
larger proportion than the single authors’ articles. However,
the average number of multiple authors’ articles is limited to
two authors. This consequence is consistent with other related
disciplines [39], [40].

Scholars can connect to each other in four path lengths,
characterizing the small-world properties. However, the Turing
Award Collaboration Network is not the scale-free network,
and then clustering coefficient began to decline in 2004. The
reason may be that each author can collaborate with a limited
number of scholars, so the scholars in the Turing Award
Collaboration Network cannot be “preferential attachment”
freely as the scale-free network. In addition, scholars tend to
form a group to study the academic. Moreover, we further
explore the relationship between the TN and the measured
metrics. Consequently, we draw a conclusion that the closer
the authors are to the Turing Award, the better the metrics.
It shows that these authors are more superior. Compared with
the random network, this network is more closely linked to
the group but less connected because of the community.

As the possible future research direction, we believe that it
would be necessary to expand the analysis of the performance
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metrics, including citations and h-index, [6], [41], to perceive
whether the collaboration has an impact on them.
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