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Abstract— Complex networks have become an active interdisci-
plinary field of research inspired by the empirical study of various
networks. A subway network is a real-world example of complex
networks in the transportation domain, which has attracted
growing attention in network analysis recently. Analyzing human
mobility patterns, specifically in ranking subway stations closely
bounded by urban subway planning and individuals’ travel
experience, is still an open issue. In this paper, we propose
a novel ranking method of station importance (SIRank) by
utilizing human mobility patterns and improved PageRank algo-
rithm. Specifically, by analyzing human mobility patterns of the
subway system in Shanghai, we demonstrate both static and
dynamic characteristics using two network models (Shanghai
subway static network and Shanghai subway passenger network).
In particular, the SIRank focuses on bi-directional passenger flow
analysis between origins and destinations to iteratively generate
the importance value for each station. We implement a range of
the experiments to illustrate the effectiveness of SIRank using the
real-world subway transaction datasets. The results demonstrate
that the hit ratio in SIRank reaches 60% in the top five stations,
which is much higher than that of ranking by a weighted
mixed index (WMIRank) and ranking by node degree (NDRank)
approaches.

Index Terms— Human mobility patterns, complex networks,
PageRank, subway networks.

I. INTRODUCTION

COMPLEX networks have become an active interdis-
ciplinary field of research inspired by the empirical

study of real-world networks, e.g. transportation networks,
cellular networks, brain networks, computer networks, and
social networks [1]. Complex network analysis has drawn
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more attention and become a hot spot of research [2]. Sub-
way networks are a real-life example of complex networks,
in which human mobility patterns can be analyzed and ranked
by their station importance (SI).

Commuting by subway in urban areas is a popular choice
because of its economic and practical efficiency [3]. Increas-
ingly more subway lines and stations are being constructed
to improve transportation efficiency as well as relieve traffic
congestions. This trend gradually forms a complex subway
system. Therefore, it is vital to understand network topology,
station importance, and human mobility patterns of a subway
network. In turn, this knowledge subsequently aids a wide
range of functions including city planning [4], [5], functional
region identification [6], emergency response strategies [7],
and public transportation management [8], [9]. On the other
hand, it can also shed valuable light in the field of network
science.

Ranking station importance is closely related to a range of
applications, i.e., station investment [10], subway construction
planning [11], and route planning [12]. First, SI ranking is an
essential criterion for investing in the maintenance of subway
stations. Stations of substantial importance should acquire
more funding to improve their service quality. Second, SI rank-
ing is helpful in subway construction planning. For example,
the locations of transfer stations must be carefully considered
when constructing a new subway line. Third, SI ranking score
is quite useful when planning infrastructure construction and
shuttle bus routes around subway stations.

Additionally, understanding the importance of stations
also contributes to network robustness analysis [13], city
planning [6], and advertising placement [14]. In recent years,
the expansion of subway networks makes transit security face
severe challenges. Natural disasters, human errors, and mali-
cious attacks cause very serious consequences which threaten
the safety of people’s lives and property. To evaluate the
robustness of subway networks, we usually remove critical
and transit stations and compare the routing planning perfor-
mance before and after removing these stations. Furthermore,
researchers also propose evacuation plans and detour routing
strategies in the event of emergency. Moreover, SI ranking
can help city planners solve the contradiction between urban
regional functions and people’s living needs. In addition, city
planners can analyze shortcomings in local development and
prioritize the construction of the corresponding service venues.
It is common practice to design the smart city plan today.
Additionally, advertising is critical to business development.
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However, how to select a good place is still an open issue
in subway networks. From this perspective, our SI ranking
method provides useful information for advertising agencies,
which not only saves the marketing expenses for the company
but also enhances the product promotion and influence of the
company.

Based on passenger mobility patterns, centrality, and con-
nectivity, we leverage the SI metric to identify the most
important station. Schematically, a subway station is defined as
a node and a journey is regarded as a link. The spatio-temporal
distribution of passenger flow and network topological char-
acteristics determine the strength of ties between nodes.

In the past few years, several types of research methods have
been conducted to analyze subway networks and passenger
flow using complex network theory. Such work mainly focuses
on network topology [15], network robustness [16], [17],
network evolution [18], network efficiency [19], [20],
network node importance [17], [21], [22], passenger flow
patterns [23]–[25], and urban event detection [26]. The
research provides a valuable reference and lays a solid
foundation for this paper.

The current findings also exhibit limitations in exploring
topology and human mobility patterns. To be specific, primary
methods typically focus on investigating static network topol-
ogy without considering passenger movement trajectories, and
usually ignore the dynamic nature of subway networks. Addi-
tionally, although passenger flow patterns have been examined
in previous research [23]–[25], it is limited to adjacent stations
and passenger flow with a single state. The interrelationship
between origins and destinations are typically ignored [24].
Furthermore, the trip direction is another critical factor for
evaluating station importance, which has always been omitted
in the current research.

In this paper, we use subway smart card transaction datasets
consisting of 14 subway lines and 288 subway stations from
Shanghai to analyze human mobility patterns and station
importance. First, we construct two topological network mod-
els: (1) a Shanghai Subway Static Network (SSSN) based on
physical infrastructure configurations, and (2) a Shanghai Sub-
way Passenger Network (SSPN) based on passengers’ origins
and destinations. According to [27], we assume that passenger
flow follows the geodesic paths in SSSN and SSPN. Next,
we leverage three macroscopic metrics and three microscopic
metrics to compare and analyze these two network topologies
and acquire human mobility patterns. Then, we develop a
novel Ranking Method of Station Importance (SIRank) to
evaluate station importance during operation.

Our main contributions can be generalized as follows:

• We propose a definition of SI and a new Ranking Method
of SI (SIRank) to rank subway stations by utilizing human
mobility patterns and improved PageRank algorithm.
Moreover, we verify the effectiveness of SIRank by com-
paring it to Ranking by a Weighted Mixed Index (WMI-
Rank) and Ranking by Node Degree (NDRank) methods.

• We leverage microscopic and macroscopic indicators to
analyze static and dynamic characteristics of Shanghai
subway network.

• We propose a novel network model referred to as SSPN,
which is a directed weighted graph based on the geodesic
paths between origins and destinations. SSPN breaks
geographical spatial limits in the network.

• We discover a heavy-tailed phenomenon for the degree
distribution in SSSN and a relatively high clustering
coefficient in SSPN through analyzing the characteristics
of the two models.

The remainder of the paper is structured as follows. First,
we briefly review the related work and outline their limitations
in Section II. Subsequently, we provide a detailed description
of the two network models and six indicators in section III.
In Section IV, we define our SI metric and describe the
proposed SIRank. Section V illustrates the datasets and the
experiments we conduct to compare SIRank with other two
methods. Finally, we conclude in Section VI.

II. RELATED WORK

Ranking subway stations is an interesting research
area primarily motivated by the empirical study of
real-world networks such as social networks [1],
the world economic networks [28], and transportation
networks [17], [18], [29], [30] in the last decade. In this
section, we review relevant literature and highlight related
techniques from the following two aspects.

A. Subway Network Analysis

Subway network analysis has experienced a rapid devel-
opment due to three significant network models, namely, ran-
dom networks [31], small-world networks [32], and scale-free
networks [33]. Specifically, random networks show that the
number of vertices and edges are distributed randomly in
a graph. Small-world networks propose a power-law degree
distribution feature, and scale-free networks discover a char-
acteristic of short path length and high clustering coefficient in
a network. In general, these discoveries are landmarks in the
field. Meanwhile, several researchers concentrate on analyzing
the topology, connectivity, reliability, robustness, and node
importance of subway networks.

The authors in [16] examine betweenness centrality
of 28 subway networks and analyze the regularities of the evo-
lution of centrality when network size varies. Louf et al. [15]
evaluate the scaling properties of subway systems by utilizing
three indicators: the number of stations, the total length, and
the ridership.

The authors in [18] investigate the evolutionary patterns
of Beijing subway network and propose a growth model
utilizing an expanding and intensifying mode. Furthermore,
Vragović et al. [19] introduce the concept of network effi-
ciency for information exchange in the Boston subway
network. Yang et al. [17] assess the robustness of Beijing
subway network under random failures as well as malicious
attacks. They verify their model’s high reliability and robust-
ness and also propose a new weighted mixed index (degree
and betweenness centrality) to evaluate node importance.
Wei et al. [21] focus on a grading method of subway stations
by utilizing static factors (location, surrounding facilities, etc.)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIA et al.: RANKING STATION IMPORTANCE WITH HUMAN MOBILITY PATTERNS USING SUBWAY NETWORK DATASETS 3

and dynamic features (such as passenger flow), but they only
perform rough classifications of stations instead of ranking
them.

The research discussed above mainly focuses on the sub-
way network topology, while neglecting the spatio-temporal
changes in passenger flow and the interrelationships of subway
stations. In a subway system, travel characteristics of people
and their social activities usually play an important role in
analyzing network topology and evaluating detour planning
strategies.

B. Human Mobility Patterns

Human mobility patterns have recently attracted researchers
partially because traffic trajectory data can be easily accessed.
Exploring patterns of human mobility improves urban traffic
conditions [20], identifies urban functional areas [34], predicts
human mobility [35], and increases the efficiency of our
lives [26], [36].

Lévy flight model lays a solid foundation for human travel
regularities, which demonstrates trip distance following a
power law distribution [37]. Furthermore, Song et al. [38] find
that human mobility exhibits spatio-temporal characteristics,
and they introduce the concept of mobile phone users’ entropy
which can predict mobility patterns with an accuracy rate
of 93%. In addition, Simini et al. [39] prove that the radiation
model usually has a higher forecast precision than the gravity
law in human mobility patterns.

Zhao et al. [40] examine four transportation modes and
find out a single mode following a log-normal distribution
and a mixed mode following a power law distribution. These
findings shed light on the understanding of human mobility
patterns. Later, Calabrese et al. [41] prove that the trip dis-
placement of people follows a power law with an exponential
cut-off by analyzing traffic trajectory data. Wang et al. [42]
analyze taxi trajectory data from five cities and propose
an exponential distribution that fits trip displacement and a
log-normal distribution that fits trip duration.

Veloso et al. [43] find that Gamma distribution fits trip dis-
tance, and an exponential distribution fits trip interval by using
a taxi dataset in Lisbon. Meanwhile, Csáji et al. [44] illustrate
that commuting distances follow a log-normal distribution
based on mobile phone call records in Portugal. Additionally,
Chen et al. [26] propose a tensor co-factorization based data
fusion framework, for urban event detection by using crowd
mobility and social activity data. Lenormand et al. [36] utilize
credit-card records to analyze socio-demographic phenomena
in human mobility patterns based on three human attributes
(gender, age, and occupation).

The authors in [29] construct a complex weighted network
to analyze passenger flow in the rail transit system of Singa-
pore and notice a heavy volume of passengers on hub nodes.
However, it was limited by the adoption of a coarse-grained
method with a time slot of a day. Hasan et al. [45] propose a
human mobility model that predicts the visiting locations of
people through the analysis of smart subway card transactions.
Lee et al. [46] develop a master equation approach to analyze
passenger flow distributions in the subway system of Seoul.

Fig. 1. Two different network topologies of Shanghai subway. (a) SSSN
topology. (b) SSPN topology.

Roth et al. [47] study the structure and formation of the
city based on trip data from the subway system of London.
Xu et al. [24] utilize human mobility data to explore individual
passenger movement patterns in the Beijing subway system
and identify ten cluster structures in the network.

The research mentioned above has not considered the under-
lying physical topology of subway systems in great detail
and lacks a refined validation method to evaluate network
node importance. In this paper, we leverage travel regularities
to thoroughly analyze the subway system of Shanghai by
reevaluating the topology and node importance in the network.

III. PRELIMINARY

A. Network Model

The first subway line built in Shanghai was in 1993.
Today, Shanghai subway system has grown to a complex
system with 14 subway lines and 288 subway stations. The
total length of Shanghai subway is 567 km and ranks the
first in the world as of 2014. To illustrate the topological
characteristics of Shanghai subway network, we represent it
using two models (SSSN and SSPN) leveraging L-space [48]
and spatio-temporal patterns of human mobility. As shown
in Fig. 1, SSSN displays topological and connectivity features,
while SSPN provides further details including the direction
and volume of passenger flow.

Definition 1: (SSSN) Gs = (Vs , Es) is an undirected graph,
where Vs denotes the set of subway stations (Vs �= ∅) and
Es represents the set of edges (� Es �≥ 1). According to the
theory of L-space, there exists an edge e = (vsi , vs j ) ∈ Es

linked directly between an origin vsi and a destination vs j

in a real subway network, where vsi , vs j ∈ Vs . As shown
in Fig. 1(a), SSSN describes the original topology of Shanghai
subway.

Definition 2: (SSPN) G p = (Vp, E p) is a directed weighted
graph, where Vp denotes the set of subway stations (Vp �= ∅)
and E p represents the set of edges (� E p �≥ 1). According
to the distribution of subway passenger flow, there exists a
directed edge ep = (v pi → v pj ) ∈ E p, if there exists an
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origin-destination trip from an origin v pi to a destination v pj

in a real subway network, where v pi , v pj ∈ Vp . Meanwhile,
the weight of ep is equal to the volume of passenger flow from
v pi to v pj . As shown in Fig. 1(b), SSPN analyzes Shanghai
subway from the perspective of passenger flow.

L-space represents the original network topology of
real-world transport networks, in which stations are vertices
and edges link any two consecutive stations on a specific
route. In contrast, P-space represents the spatial topology of
real-life transport networks [49]. Two nodes are connected
if they are linked with at least a subway line. The path
weight between two nodes denotes the transfer frequency in
the trip. However, P-space only considers the distribution of
passenger flow using a single physical subway line. In this
paper, we investigate a different network topology concerning
the relationship between a pair of stations from different
subway lines. In addition, Borgatti [27] mainly focus on the
pattern of traffic flow within a network and categorize traffic
into four types, i.e. geodesics, paths, trails, or walks. In an
urban subway scenario, a passenger who travels for his/her
social activities has fixed destinations and origins. In addition,
a passenger normally knows and selects the shortest route,
so we can assume that the travel trajectory follows the shortest
path (with the utilization of transfer stations). To be specific,
we acquire the coordinates of a trip’s origin and destination
and calculate the geodesic path D as follows:
D = r × arccos(sin(arg(β2)) sin(arg(α2))+ cos(arg(β2))

× cos(arg(α2)) cos(arg(β1 − α1))), (1)

where r denotes the Earth radius with the value of 6370 km,
α1 and α2 represent the origin’s longitude and latitude
respectively, and the destination’s longitude and latitude are
expressed by β1 and β2 respectively.

For SSSN, a passenger’s travel distance is equal to the sum
of the shortest geodesic path between any two stations. For
SSPN, we directly calculate the geodesic path between an
origin and a destination. Our proposed SSPN mainly focuses
on how to analyze network architecture and rank station
importance by utilizing human mobility patterns and network
indicators in Shanghai subway system. In SSPN, we use a
bi-directional weighted graph to illustrate both incoming and
outgoing passenger flow at subway stations.

B. Human Mobility Macroscopic Indicators

1) Time: Time is one of the macroscopic indicators of
human mobility patterns. In general, the daily activities of
most commuters exhibit temporal regularities on weekdays.
However, people tend to possess different movement patterns
on weekends. Extensive experiments are conducted on week-
days and weekends at different time slots. We set δ hour(s) as
an interval for each day as shown in Equation (2):

th = [hδ, (h + 1)δ), h = 0, 1, . . . , (24/δ)− 1, (2)

where th is the hth time slot. We define one hour to be the
time interval and acquire transaction records spanning 20 time
slots from 4:00 to 23:00.

2) Location: Location is another macroscopic indicator of
human mobility patterns and reflects the spatial law regarding
the movement of people. In this paper, this metric is closely
related to the geographic coordinates of subway stations.
Moreover, it is well known that different locations possess
different social functions.

3) Volume: The subway passenger volume is the third
important macroscopic indicator of human mobility pat-
terns. In particular, we evaluate station importance concern-
ing the passenger flow of incoming links. In other words,
the frequency of passenger flow is measured against node
importance.

C. Network Microscopic Indicators

Network indicators are often used in complex network
analysis [2]. In this paper, we introduce three microscopic
network indicators motivated in the following three aspects.
First, subway networks are real-world examples of complex
networks. A subway station is deemed as a node and a
trip as an edge in complex networks. Therefore, we can
take the problem of ranking station importance in subway
networks as an issue of evaluating node centrality in com-
plex networks. When analyzing node centrality, several net-
work indicators (degree centrality, closeness centrality, and
clustering coefficient) are crucial factors [27]. Second, some
scholars also utilize network indicators to analyze the topology
of subway networks and evaluate the node centrality [15].
Furthermore, some approaches are also proposed to rank sta-
tion importance [17], [21], [22]. Third, we combine network
indicators with human mobility patterns and conduct exten-
sive experiments to verify the effectiveness of our proposed
algorithm SIRank.

1) Node Degree and Degree Centrality: Node degree
depicts a significant level of nodes’ transferability. In SSSN,
the degree of station i (Di ) represents the number of the
stations linked with it. In SSPN, we introduce the in-degree
(InD(i)) and out-degree (Out D(i)) values to measure the
corresponding importance level of station i . The equations of
node degree Di , in-degree InDi , and out-degree Out Di are
defined as follows:

Di =
N∑

j=1, j �=i

Ei j , (3)

InDi =
N∑

j=1, j �=i

Ei← j , (4)

Out Di =
N∑

j=1, j �=i

Ei→ j , (5)

where N denotes the number of subway stations. If there
exists an undirected link between stations i and j , Eij = 1;
Otherwise, Eij = 0. InDi denotes the total number
of connections which terminate at station i , and Out Di

denotes the total number of connections originated from
station i .

To analyze the distribution of node degree thoroughly,
we introduce degree centrality (DCi ) to normalize the links
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Fig. 2. Framework for ranking station importance.

of nodes for SSSN and SSPN. DCi is defined as follows:
DCi = Di

N − 1
. (6)

2) Clustering Coefficient: In this paper, we utilize this
metric to identify groups with a relatively high density of ties
within the subway network. In addition, this metric can be used
as the characteristic of a scale-free network or small-world
phenomenon with high connectivity. Ci represents the clus-
tering coefficient of node i . C denotes the average clustering
coefficient and reflects the density relationships between all
subway stations in SSSN and SSPN.

Ci = 2Di

N(N − 1)
0 < Ci ≤ 1, (7)

C =
∑
i∈G

Ci

N
. (8)

3) Closeness Centrality: Closeness centrality (CC) reflects
a station’s closeness to other stations in SSSN and SSPN.
A larger value of CC represents a shorter total distance to
all the other stations and thus indicates a higher importance
level. The metric is defined as the reciprocal of the sum of
the shortest path length from a station to all the other stations.
The formula is defined as follows:

CCi = 1∑
i, j∈G,i �= j

di j
, (9)

where di j represents the shortest path length between stations
i and j . In addition, the average of CC indicates the overall
operation efficiency of the network.

IV. FRAMEWORK OF THE RANKING METHOD

A. Overview

As shown in Fig. 2, we first filter out erroneous and irrele-
vant records and utilize a statistical analysis method to acquire
real passenger transaction datasets from subway smart cards.
Next, we construct SSSN and SSPN to analyze static and
dynamic characteristics of the subway network, extract human
mobility patterns, and acquire degree centrality, clustering
coefficient, and closeness centrality of all stations. Finally,
we define the SI metric and propose a ranking method SIRank

to evaluate the importance level of each subway station, which
is valuable for city planning and public transport management.

Nowadays, subway networks contribute to the acceleration
of urbanization process in China (Shanghai being no excep-
tion). To our knowledge as the authors, these indicators have
been validated as being practically effective [22]. Based on
the analogy between subway passenger networks and complex
networks, we use three microscopic metrics to rank the SI of
each station. These are degree centrality, clustering coefficient,
and closeness centrality.

Considering the spatio-temporal distribution of passengers,
there also exist dynamic characteristics in subway networks.
These dynamic features are essential for evaluating which
subway stations are more important. People usually travel
for their social activities such as working, shopping, and
entertainment. Furthermore, we find that trajectory data has
some spatio-temporal regularities. For example, in the morning
rush hour, the majority of passenger flow is from residential
regions to commercial districts. Therefore, we introduce three
macroscopic indicators (time, location, and volume) to analyze
human mobility patterns and identify the most important
stations. We elaborate the ranking mechanism for the SI in
the following subsections.

As shown in Fig. 3, the 14 Shanghai subway lines are
denoted in different colors. Transfer stations, where multiple
subway lines or branches meet or cross, are shown in large
black circles (as opposed to small color circles for non-transfer
stations). It should be noted that physical transfers take place
in connected subway lines, such as in Xinzhuang Station
which connects subway Lines 1 and 5. Hence, stations with
connecting subway lines are also considered transfer stations.

B. PageRank

It is well known that PageRank algorithm [50] has been
developed by Google to rank websites based on their search
engine results. PageRank is an algorithm for quantifying the
importance of web pages by calculating the number and qual-
ity of links to that page. Its basic assumption is that websites
of greater importance are likely to obtain higher rankings by
obtaining a larger quantity of links from influential websites.
This algorithm can not only be applied to rank the importance
of websites on the World Wide Web but also calculate the
importance of stations in traffic networks. The ranking score
of each node is generated iteratively by considering the number
and importance level of neighboring nodes.

Considering all the nodes in the network, the model devel-
ops an iterative process shown in Equation (10).

P R
 = αMP R + (1− α)q, (10)

where P R
 is the ranking score vector for the next step, and q
is a row vector (0, …, 1, …, 0). M is the transfer matrix that
denotes the probability for each node to go to the neighboring
node. The process will not stop until each node is assigned a
constant ranking score.

For PageRank algorithm, there exists a hypothesis that web
pages with more important information are likely to obtain
higher ranking scores. In other words, PageRank assumes
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Fig. 3. Shanghai subway network map.

that the web pages receive more links for its degree of
correlation with a given web page. However, passenger flow
in urban traffic scenarios is quite different from web page
traffic. In daily life, people tend to travel in regards to
their social activities along with their predetermined path and
station sequence. Therefore, in addition to static properties
of stations, the dynamic distribution of passenger flow also
significantly impacts SI. Thus, we introduce human mobility
patterns to reevaluate the SI metric for each station. In SIRank,
we allocate various weights to edges in attempt to reflect the
importance of each node.

C. Proposed SIRank Method

In this paper, SIRank mainly assesses the importance level
of stations based on their topology and human mobility
patterns. SIRank is inspired by two factors: one, passengers
usually travel from one station to another for their social
activities, and the other, passenger flow indicates the strength
of ties between origin and destination stations. Moreover,
SIRank stems from PageRank algorithm, which has been
proved to be suitable for ranking the importance of nodes
in complex networks [50]. According to the above-mentioned
metrics, we rank subway stations by utilizing static network
properties and dynamic laws of human mobility and assess the
topology of the subway network with greater accuracy.

Definition 3: (Station Importance (SI)) In subway networks,
SI is defined as follows:

SI (i) = αSI_H (i)+ βSI_N(i), (11)

SI_H (i) = d
∑

t∈T

∑

j∈P(i)

SI ( j)
←−−
Wi, j

t

20
∑

k∈P( j )

←−−
W t

k, j

+ (1− d)

N
, (12)

SI_N(i) = γ DCt
i + ϕCt

i + λCCt
i . (13)

In Equation (11), SI (i) denotes the ranking score of
station i . SI_H (i) denotes the ranking score of station i
considering human mobility patterns. SI_N(i) denotes the
ranking score of station i considering the characteristics of
the subway network topology. In Equation (12), P(i) is a
set containing all of the neighbors of station i . In addition,
N is the total number of stations in the networks and d is a
dampening factor that is usually set as 0.85 [51]. For Pagerank,
the transfer matrix is comprised of the inverse of out-degree
of nodes. However, the transfer matrix for SIRank includes
dynamic factors (distribution of spatio-temporal passenger
flow) that denote the probability of passengers to go from
a given station to other stations with an average value of total
slots T . In Equation (13), we define

←−−
Wi, j

t as the volume
of passenger flow from station j to i at the tth time slot,
which ranges from 1 to 27,530. Meanwhile, DCt

i , Ct
i , and
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CCt
i are degree centrality, clustering coefficient, and closeness

centrality of station i at the tth time slot, respectively. The
value of each of the three indicators is between 0 and 1.

For five parameters α, β, γ , ϕ and λ, α + β = 1 and
γ + ϕ + λ = 1. And their values range from 0 to 1.
To obtain good experimental results, we set the probability
of random jump as 0.1. At present, the commonly used para-
meter estimation methods are linear regression, multiple linear
regression, and vector machine regression [52]. According to
our experimental characteristic, we apply multivariate linear
regression to estimate the parameters of SIRank. We discover
that α obtains a relatively high value, and β gets a relatively
low value. We also estimate the optimal parameters to compare
the ranking results with WMIRank and NDRank. Specifically,
stations with higher node degree acquire higher ranking scores
for β ≥ 0.5. When β is 0.9, the performance of SIRank is
almost equal to that of NodeRank. If β ≤ 0.3, SIRank has
a skewed ranking result and stations in residential areas get
higher ranking scores. For γ, ϕ and λ, degree centrality has
a greater impact on ranking scores of stations than the other
two parameters.

Algorithm 1 Pseudocode of SIRank
Input: Subway Transaction Datasets
Output: The Importance of Stations
1: procedure :Generate the SI value for each Station
2: Assume all stations as nodes
3: � ← 0.00001
4: d ← 0.85
5: for each node i ∈ Vp do
6: SI (i)← 1/N
7: end for
8: for each node i ∈ Vp do
9: SI (i)
 ← 0

10: for each node j ∈ node i 
s neighbors do

11: S = 1
20

∑
t∈T

∑
j∈P(i)

←−−
Wi, j

t

∑
k∈P( j)

←−−
Wk, j

t

12: SI_H (i)← d SI ( j)S + (1− d)/N
13: SI_M(i)← γ DCt

i + ϕCt
i + λCCt

i
14: SI (i)
 ← SI (i)
 + αSI_H (i)+ βSI_M(i)
15: if |SI (i)
 − SI (i)| ≤ � then
16: Exi t
17: end if
18: SI (i)← SI (i)

19: end for
20: end for
21: return SI (i)
, i ∈ Vp

22: end procedure

The proposed SIRank is illustrated in Algorithm 1. We ana-
lyze the stability and time complexity of calculating the SI
index. We select two stations (People Square and Shanghai
Railway Station) as test objects which are denoted by S1 and
S2 respectively. We utilize different datasets to verify whether
the relative positions of S1 and S2 change in the ranking
list. The results show that S1 is always in front of S2, which
confirms the stability of SIRank. In addition, there is a problem

TABLE I

FORMAT OF THE DATASETS

of artificially cheating in PageRank to improve the ranking of
websites, and this problem does not exist in SIRank in public
transit scenarios. Meanwhile, we assume that |S| denotes
the number of non-zero elements in transfer matrix S. The
importance propagation of SIRank utilizing multiplication of
transfer matrix needs O(n|S|) time with n iterations. Actually,
SIRank converges only after a limited number of iterations.
Therefore, the efficiency is mainly affected by the passenger
flow and network metric values. SIRank is able to effectively
rank the station importance in the subway network from a
data-driven perspective.

V. EXPERIMENTS AND ANALYSIS

A. Datasets Description and Preprocessing

In this paper, we collect transaction records from the subway
smart cards in Shanghai subway system during April 2015.
Shanghai subway included 14 subway lines and 288 stations
at the time of data collection. As listed in Table I, the dataset
consists of seven fields with more than 451 million transaction
records, containing details regarding spatio-temporal patterns
of human mobility.

To improve the statistical precision, we first cleaned the
dataset and excluded error data generated by faulty devices
and human failure. The percentage of these error logs is about
0.95%. Based on statistical analysis, we extracted the origins
and destinations of each person on a daily basis by analyz-
ing passenger flow between pairs of subway stations, with
consideration for human behavioral regularities. Furthermore,
we conducted an in-depth analysis of three time slots (morning
rush hour, noon, and evening rush hour) on weekdays and
weekends. Particularly, we introduced indicators to assess SI
using static network metrics and dynamic passenger flow
respectively.

B. Exploring Human Mobility Patterns

According to three-dimensional properties (time, location,
and volume), we quantitatively analyze passenger movement
patterns in Shanghai subway network on weekends and week-
days. We then construct a chord diagram to illustrate the
characteristics of passenger flow. Each circle consists of arcs
of various colors, with each color representing a different
subway line. The links denote passenger flow between each
pair of subway lines. The thickness of each link denotes
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Fig. 4. Spatio-temporal patterns of human mobility from the perspective of subway lines. (a) Morning rush hours on weekdays. (b) Noon break hours
on weekdays. (c) Evening rush hours on weekdays. (d) Morning rush hours on weekends. (e) Noon break hours on weekends. (f) Evening rush hours on
weekends.

the volume of passenger flow between two subway lines;
thicker links represent larger passenger flow. The color of links
denotes the direction of trips. Links with the same color in a
circle represent an outgoing passenger flow. Simultaneously
the inverse corresponds to incoming passenger flow.

As shown in Fig. 4, we observe that Lines 1 and 2 have
relatively more passenger flow than that of Line 16. Line 2 has
a close tie with Line 12 as compared with other lines as seen
in Figs. 4(a) – 4(c). On weekends, most people engage in
non-work related activities, which results in a skewed human
mobility pattern. For example, the trip direction between Lines
2 and 10 on weekdays is opposite to that on weekends
according to Figs. 4(d) – 4(f).

We explore the patterns of human mobility from the per-
spective of an association between stations and shed light
on the knowledge concerning Shanghai subway network.
As shown in Fig. 5, larger passenger flow exists in the morning
and evening rush hours on weekdays than that on weekends.
As shown in Figs. 5(a) – 5(c), we notice that several hot spot
subway routes exist, namely, from Tonghe Xincun to Shanghai
Railway Station, from Xinzhuang to People’s Square, and from
Jiuting to Caohejing Hi-Tech. Interestingly, round trips on the
same routes exist during the evening rush hours. This implies
that the three originating stations are located in residential

areas and therefore possess large travel demands towards the
city, during the morning rush hours.

As shown in Figs. 5(d)–5(f), it can be seen that two popular
subway trips exist, namely, from Xinzhuang to People’s Square
and from East Xujin to Zhongshan Park. People’s Square
resides in the central business district, an area to which more
people travel for leisure and entertainment.

C. Analyzing Network Indicators

1) Degree and Degree Centrality Distribution: As shown
in Fig. 6(a), we observe that degree distribution does not
follow the power or Poisson laws, which are characteristics
of scale-free and small-world networks, respectively. As the
size of network increases, subway stations cannot be connected
preferentially due to the limitation of geographical structure of
the city. This factor contributes to the characteristics of degree
distribution. In addition, other factors such as popular station
considerations, balanced coverage, and costs, may also impact
the distribution of degree. In SSSN, nodes with a degree of 2
have a high proportion of 77% in all nodes. Furthermore,
we calculate the Cumulative Probability Distribution (CPD)
of degree and find out a heavy-tailed phenomenon exists. The
average degree of the network is also computed as 2.3125.
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Fig. 5. Spatio-temporal patterns of human mobility with respect to subway stations. (a) Morning rush hours on weekdays. (b) Noon break hours on weekdays.
(c) Evening rush hours on weekdays. (d) Morning rush hours on weekends. (e) Noon break hours on weekends. (f) Evening rush hours on weekends.

Fig. 6. Distribution of node degree. (a) SSSN. (b) SSPN.

Different CPD for in-degree and out-degree exists for SSPN
according to Fig. 6(b). The average values of in-degree and
out-degree are 203 and 197 respectively, which are much larger
than the node degree in SSSN. Through comparative analysis,
we find that popular stations are mainly located near People’s
Square, Shanghai Railway Station, and Lujiazui.

We normalize the degree centrality and compare the differ-
ence between weekdays and weekends. As shown in Fig. 7(a),
without considering passenger flow factor in SSSN, the degree
centrality remains low. In SSPN, we notice that the degree
centrality in the evening rush hours is obviously larger than
that in other time slots. Furthermore, the degree centrality
fluctuates more frequently on weekends, as shown in Fig. 7(b).
This implies that travel patterns are more regular on weekdays
than that on weekends.

2) Clustering Coefficient Distribution: As shown in Fig. 8,
we acquire the distribution of clustering coefficients in SSSN.

Fig. 7. Distribution of degree centrality. (a) On weekdays. (b) On weekends.

Fig. 8. Distribution of clustering coefficient. (a) On weekdays. (b) On
weekends.

To our surprise, only six nodes exist with a non-zero value.
These six nodes form two triangular routines, i.e., Shanghai
Indoor Stadium, Yishan Road, and Xujia Hui. Furthermore,
the average value is only 0.003125 which is much less
than that of small-world networks. It also reflects the loose
connectivity of the network.
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Fig. 9. Distribution of closeness centrality. (a) On weekdays. (b) On
weekends.

The clustering coefficient in SSPN is 0.828249 on weekdays
and 0.804645 on weekends, which demonstrates the close
connectivity of the network. We also note that a different
distribution law in SSPN exists, where the value during
morning rush hours is higher than that at noon on weekdays
and is the opposite on weekends. This indicates that the
travel patterns of people are similar in the mornings during
weekdays due to their commuting routines. On the other hand,
it has a higher clustering coefficient during the noon time on
weekends, which demonstrates travel preferences and social
activities of people.

3) Closeness Centrality Distribution: This metric reflects
the efficiency of the network as it correlates to the inverse of
the length of the shortest path. As shown in Fig. 9, the value of
SSPN falls within the interval [0.6, 1.0] whereas the value of
SSSN drops to the interval [0.0, 0.5]. Furthermore, we find
that the value of closeness centrality is the largest during
rush hours on weekday mornings and rush hours on weekend
evenings. It partially shows traffic congestion condition during
these period. Specifically, Shanghai Railway Station is the
most popular station with a value of 0.9829 between 7:00 and
9:00 on Monday, while Century Avenue Station reaches the
highest value of 1 during the evening rush hours, as it is
essentially the traffic hub of four subway lines.

D. SIRank Performance Analysis

Ranking station importance is crucial when trying to com-
prehend network topology and the integration of a new subway
line. In this paper, we propose a novel ranking method
SIRank by introducing human mobility patterns and network
properties to evaluate the influence of subway stations in the
network. To verify the effectiveness of SIRank, we conduct a
series of experiments to analyze the performance of SIRank
as compared to WMIRank [17] and NDRank [22]. WMIRank
utilizes a weighted compound method to evaluate SI by using
two metrics (node degree and node betweenness). NDRank
leverages node degree to rank SI. However, SIRank considers
static network topological characteristics as well as dynamic
human mobility patterns.

We propose an evaluation indicator (hit ratio) to measure the
performance of SIRank. The definition of hit ratio is shown
in Equation (14).

Definition 4 (Hit Ratio): This metric is defined as the ratio of
the number of selected existing stations as transfer stations for
new subway lines to the total number of stations considered.

Hit Ratio = Ntr

Nse
, (14)

Fig. 10. Experimental results of three ranking algorithms. (a) Rank value of
all stations. (b) Number of hit stations.

where Ntr is the number of subway stations which are selected
as transfer stations linking new subway lines. Nse is the total
number of stations considered in our experiment.

To the best of our knowledge, there is no existing standard
for ranking the importance of subway stations. However, the SI
for each station is obviously different and is quite helpful to
manage and analyze the subway networks. The decision of
how to construct a new line must take into account many
factors including geographical structure, construction cost,
and operation efficiency. In this paper, we assume that the
improvement of operation efficiency of subways is the primary
element for the selection of transfer stations. The selected
transfer stations should intuitively acquire a higher SI ranking.
Therefore, we identify the ranking of transfer stations as a crit-
ical evaluation factor. According to Shanghai subway transit
development plan,1 12 subway lines and 26 transfer stations
will be completed by 2020. Traffic management departments
have announced the locations of the transfer stations. Based
on the information, we calculate the hit ratio of the top n
stations ranked by SIRank. The higher the hit ratio, the better
the performance of the ranking algorithm.

As shown in Fig. 10, we acquire the experimental results of
SIRank, WMIRank, and NDRank. Fig. 10(a) mainly reflects
the degree of difference in rank value. X-axis represents the
ranking of 288 stations. Y-axis indicates the corresponding
rank value for each station. We discover that SIRank and
NDRank have a higher discrimination score than WMIRank.
The value of SIRank ranges from 0.02903 to 0.00061, and the
value of NDRank is between 0.02715 and 0.00059. However,
the value of WMIRank is only between 0.00713 and 0.00112.
Fig. 10(b) shows the number of hit stations with different top
n such as 5, 10, . . . , 100. As seen from this figure, the perfor-
mance of SIRank outperforms other two methods regarding hit
ratio. For example, if n is equal to 10, the number of transfer
stations for three algorithms are 5, 1, and 3 respectively.
SIRank has the most selected transfer stations in the top
10 stations.

We list the SI ranking of the top 10 stations in Table II.
Hit stations are underlined. Furthermore, we also calculate
the hit ratio in different top numbers as shown in Fig. 11(a).
Through statistical analysis, we find that the hit ratio of the
top 10 stations in SIRank is about 60% as opposed to 10%
in WMIRank and 30% in NDRank. Based on the improved
PageRank and bi-directional passenger flow, we evaluate the SI

1http://www.envir.gov.cn/docs/2016/20160418709.htm
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TABLE II

THE TOP 10 RANKING OF STATION IMPORTANCE

Fig. 11. Analysis of experimental results. (a) Performance analysis of
algorithms. (b) Sensitivity analysis of parameters.

metric in terms of hit ratio, and the results of top 100 stations
show that SIRank (at 23%) outperforms WMIRank (at 6%)
and NDRank (at 19%). In general, SIRank has a better
performance when compared with other two approaches.

We choose some representative weight combinations and
analyze the sensitivity of the five parameters on the SI ranking
as shown in Fig. 11(b). The different weights of five parame-
ters cause the SI ranking to fluctuate between 10% and 60%.
Extensive experiments prove that when α = 0.6, β = 0.4, γ =
0.5, ϕ = 0.2 and λ = 0.3, SI ranking method achieves the
best performance. Specifically, human mobility patterns make
greater contributions than other indicators. Among these three
network metrics, degree centrality outperforms the other two
on impacting the hit ratio. On the contrary, the clustering
coefficient does not influence the SI ranking as closeness
centrality.

SIRank utilizes macroscopic and microscopic metrics to
evaluate SI of each station. The microscopic metrics primarily
focus on static characteristics of network topology but cannot
reflect the relationship between origins and destinations. The
macroscopic metrics determine the strength of ties between
nodes through analyzing the spatio-temporal distributions of
passenger flow at different time intervals. In other words,
we focus on the importance level of stations from two
perspectives, travel behavior and network science, to acquire

an in-depth multidimensional understanding. It is entirely
different from traditional methods. In particular, this paper
mainly focuses on real-world subway transaction data. SIRank
can also be used to evaluate node importance of other public
transportation networks.

VI. CONCLUSION AND FUTURE WORK

By incorporating network science and human mobility pat-
terns, we propose a new ranking method SIRank to analyze
the subway network in Shanghai. The network topology is
presented and network node importance is evaluated. With
respect to passenger flow patterns, we constructed two net-
work models denoted by SSSN and SSPN respectively. SSSN
mainly reflects the native connectivity structure of the subway
network, while SSPN mainly focuses on commuter’s travel
characteristics including time, location, and volume. Then,
we comprehensively analyzed the network properties of SSSN
and SSPN by utilizing various evaluation metrics.

We discover that the values of in-degree and out-degree
in SSPN are much higher and do not fit the power and
normal distribution, respectively. For clustering coefficients,
the value of SSPN follows small-world characteristics of
subway networks. Moreover, we notice that the value of
closeness centrality in SSSN is also far less than that in SSPN.
We conduct extensive experiments to verify the performance
of SIRank using real transaction datasets. We implement a
hit ratio metric to measure the effectiveness of SIRank by
varying the number of stations. The results show that SIRank
outperforms other two algorithms in terms of hit ratio.

Although we only apply our method to subway networks,
other transportation systems such as buses, railway, and taxi
networks can also benefit practically from our research results.
By comparison, subway networks have fewer restrictions on
variables such as congestions and traffic lights.

In the future, we plan to analyze other transportation net-
works by using our proposed SIRank method. Furthermore,
we will consider human mobility patterns within different
networks along with exterior factors such as weather condi-
tions, regional functions, and traffic congestions to understand
transport systems comprehensively.
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[19] I. Vragović, E. Louis, and A. Díaz-Guilera, “Efficiency of informational
transfer in regular and complex networks,” Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 71, no. 3, Mar. 2005,
Art. no. 036122.

[20] X. Kong, Z. Xu, G. Shen, J. Wang, Q. Yang, and B. Zhang, “Urban traffic
congestion estimation and prediction based on floating car trajectory
data,” Future Generat. Comput. Syst., vol. 61, pp. 97–107, Aug. 2016.

[21] Y. Wei, S. Lin, R. Chu, Q. Tian, and W. Fei, “A method of grading
subway stations,” Procedia Eng., vol. 137, pp. 806–810, Jul. 2016.

[22] H. Wang, J. Huang, X. Xu, and Y. Xiao, “Damage attack on complex
networks,” Phys. A, Stat. Mech. Appl., vol. 408, pp. 134–148, Aug. 2014.

[23] F. Xia, J. Wang, X. Kong, Z. Wang, J. Li, and C. Liu, “Exploring human
mobility patterns in urban scenarios: A trajectory data perspective,” IEEE
Commun. Mag., vol. 56, no. 3, pp. 142–149, Mar. 2018.

[24] Q. Xu, B. H. Mao, and Y. Bai, “Network structure of subway pas-
senger flows,” J. Stat. Mech.: Theory Exp., vol. 16, no. 3, Mar. 2016,
Art. no. 033404.

[25] J. K. K. Yuen, E. W. M. Lee, S. M. Lo, and R. K. K. Yuen,
“An intelligence-based optimization model of passenger flow in a
transportation station,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3,
pp. 1290–1300, Sep. 2013.

[26] L. Chen, J. Jakubowicz, D. Yang, D. Zhang, and G. Pan, “Fine-grained
urban event detection and characterization based on tensor cofactoriza-
tion,” IEEE Trans. Human-Mach. Syst., vol. 47, no. 3, pp. 380–391,
Jun. 2017.

[27] S. P. Borgatti, “Centrality and network flow,” Soc. Netw., vol. 27, no. 1,
pp. 55–71, 2005.

[28] O. Oullier, A. P. Kirman, and J. A. S. Kelso, “The coordination
dynamics of economic decision making: A multilevel approach to social
neuroeconomics,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 16, no. 6,
pp. 557–571, Dec. 2008.

[29] H. Soh et al., “Weighted complex network analysis of travel routes on
the Singapore public transportation system,” Phys. A, Stat. Mech. its
Appl., vol. 389, no. 24, pp. 5852–5863, Dec. 2010.

[30] L. Li, H. Zhang, X. Wang, W. Lu, and Z. Mu, “Urban transit coordination
using an artificial transportation system,” IEEE Trans. Intell. Transp.
Syst., vol. 12, no. 2, pp. 374–383, Jun. 2011.

[31] A. L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[32] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[33] A.-L. Barabási and E. Bonabeau, “Scale-free networks,” Sci. Amer.,
vol. 288, no. 5, pp. 60–69, May 2003.

[34] N. J. Yuan, Y. Zheng, X. Xie, Y. Wang, K. Zheng, and H. Xiong,
“Discovering urban functional zones using latent activity trajectories,”
IEEE Trans. Knowl. Data Eng., vol. 27, no. 3, pp. 712–725, Mar. 2015.

[35] Q. Lv, Y. Qiao, N. Ansari, J. Liu, and J. Yang, “Big data driven hidden
Markov model based individual mobility prediction at points of interest,”
IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 5204–5216, Jun. 2017.

[36] M. Lenormand et al., “Influence of sociodemographic characteristics on
human mobility,” Sci. Rep., vol. 5, May 2015, Art. no. 10075.

[37] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the
Levy-walk nature of human mobility,” IEEE/ACM Trans. Netw., vol. 19,
no. 3, pp. 630–643, Jun. 2011.

[38] C. Song, Z. Qu, N. Blumm, and A. L. Barabási, “Limits of predictability
in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

[39] F. Simini, M. C. González, A. Maritan, and A. L. Barabási, “A universal
model for mobility and migration patterns,” Nature, vol. 484, no. 7392,
pp. 96–100, Apr. 2012.

[40] K. Zhao, M. Musolesi, P. Hui, W. Rao, and S. Tarkoma, “Explaining
the power-law distribution of human mobility through transportation
modality decomposition,” Sci. Rep., vol. 5, no. 9136, pp. 1–7, Mar. 2015.

[41] F. Calabrese, M. Diao, G. Di Lorenzo, J. Ferreira, and C. Ratti, “Under-
standing individual mobility patterns from urban sensing data: A mobile
phone trace example,” Transp. Res. C, Emerg. Technol., vol. 26,
pp. 301–313, Jan. 2013.

[42] W. Wang, L. Pan, N. Yuan, S. Zhang, and D. Liu, “A comparative
analysis of intra-city human mobility by taxi,” Phys. A, Stat. Mech.
Appl., vol. 420, pp. 134–147, Feb. 2015.

[43] M. Veloso, S. Phithakkitnukoon, C. Bento, N. Fonseca, and P. Olivier,
“Exploratory study of urban flow using taxi traces,” in Proc. 1st
Workshop Pervasive Urban Appl., Jun. 2011, pp. 1–8.

[44] B. C. Csáji, A. Browet, V. A. Traag, J. C. Delvenne, E. Huens,
P. Van Dooren, Z. Smoreda, and V. D. Blondel, “Exploring the mobility
of mobile phone users,” Phys. A, Stat. Mech. Appl., vol. 392, no. 6,
pp. 1459–1473, Mar. 2013.

[45] S. Hasan, C. M. Schneider, S. V. Ukkusuri, and M. C. González,
“Spatiotemporal patterns of urban human mobility,” J. Stat. Phys.,
vol. 151, nos. 1–2, pp. 304–318, Apr. 2013.

[46] K. Lee, S. Goh, J. S. Park, W.-S. Jung, and M. Y. Choi, “Master
equation approach to the intra-urban passenger flow and application to
the metropolitan Seoul subway system,” Phys. A, Math. Theor., vol. 44,
no. 11, 2011, Art. no. 115007.

[47] C. Roth, S. M. Kang, M. Batty, and M. Barthélemy, “Structure of urban
movements: Polycentric activity and entangled hierarchical flows,” PloS
One, vol. 6, no. 1, 2011, Art. no. e15923.

[48] J. Lin and Y. Ban, “Complex network topology of transportation
systems,” Transp. Rev., vol. 33, no. 6, pp. 658–685, Oct. 2013.

[49] M. Barthélemy, “Spatial networks,” Phys. Rep., vol. 499, nos. 1–3,
pp. 1–101, Feb. 2011.

[50] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the Web,” Social Netw., vol. 9, no. 1,
Nov. 1999.

[51] J. Lei and H.-F. Chen, “Distributed randomized PageRank algorithm
based on stochastic approximation,” IEEE Trans. Autom. Control,
vol. 60, no. 6, pp. 1641–1646, Jun. 2015.

[52] H. Purwins et al., “Regression methods for virtual metrology of layer
thickness in chemical vapor deposition,” IEEE/ASME Trans. Mechatron-
ics, vol. 19, no. 1, pp. 1–8, Feb. 2014.

Feng Xia (M’07–SM’12) received the B.Sc. and
Ph.D. degrees from Zhejiang University, Hangzhou,
China. He was a Research Fellow with the Queens-
land University of Technology, Australia. He is cur-
rently a Full Professor with the School of Software,
Dalian University of Technology, China. He is also
the (Guest) Editor of several international journals.
He serves as the General Chair, the PC Chair,
the Workshop Chair, or the Publicity Chair for
number of conferences. He has published two books
and over 200 scientific papers in international jour-

nals and conferences. His research interests include data science, big data,
knowledge management, network science, and systems engineering. He is a
Senior Member of ACM.

http://dx.doi.org/10.1109/TVT.2017.2788441
http://dx.doi.org/10.1109/TBDATA.2017.2725913


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIA et al.: RANKING STATION IMPORTANCE WITH HUMAN MOBILITY PATTERNS USING SUBWAY NETWORK DATASETS 13

Jinzhong Wang received the B.S. degree in com-
puter education from Anshan Normal University,
Anshan, China, in 2002, and the M.S. degree
in computer application technology from Liaoning
University, Shenyang, China, in 2005. He is cur-
rently pursuing the Ph.D. degree with the School of
Software, Dalian University of Technology, Dalian,
China. He is currently an Associate Professor with
Shenyang Sport University, Shenyang. His research
interests include traffic data analytics and mobile
social networks.

Xiangjie Kong (M’13–SM’17) received the Ph.D.
degree from Zhejiang University, Hangzhou, China,
in 2009. He is currently an Associate Professor
with the School of Software, Dalian University of
Technology, China. He has published over 100 scien-
tific papers in international journals and conferences
(with over 70 indexed by ISI SCIE). His research
interests include big traffic data, social computing,
and cyber-physical systems. He is a Member of
ACM.

Da Zhang received the B.E. degree (Hons.) in
software engineering from the Dalian University of
Technology, in 2010, and the M.S. degree in com-
puter science and engineering from Ohio State Uni-
versity, USA, in 2012. She is currently pursuing the
Ph.D. degree in electrical and computer engineering
with the University of Miami (UM), Coral Gables,
Florida. She is currently a Teaching Assistant with
UM. Her research interests include knowledge graph
management, big data, Web semantics, and deep
learning.

Zhibo Wang (M’10–SM’18) received the B.E.
degree in automation from Zhejiang University,
China, in 2007, and the Ph.D. degree in electrical
engineering and computer science from the Univer-
sity of Tennessee, Knoxville, in 2014. He is currently
an Associate Professor with the School of Cyber
Science and Engineering, Wuhan University, China.
His current research interests include mobile crowd-
sensing systems, the Internet of Things, network
security, and privacy protection. He is a Member of
ACM.


