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Abstract— Public transport is of great significance in megaci-
ties. Transit-oriented development (TOD) has become a reliable
solution to urban sustainable development, which can reshape
the urban form and improve its quality. This paper focuses
on leveraging heterogeneous mega urban data to answer three
critical questions in TOD: what region looks like under TOD
concept, which regions have the potential to be TOD regions,
and how to construct these TOD regions. For region partition,
we propose a connected component-based clustering algorithm,
which merges the large amount of public transport stops into
representative cluster ones as region centers, and then apply the
Voronoi algorithm to locate the region boundaries according to
the cluster centers. For TOD region identification, we present
a link importance-based random walk method that considers
the importance of various transits and further identifies the
most valuable regions to be TOD. For discovering functions
of TOD regions, we introduce a multifactor-based function
characterization approach that combines both the static linguistic
factor and human mobility factor together and then derives
the actual function distributions. The experiments, which are
conducted on three real data sets, show the superiority of the
proposed methods to solve the problems of region partition,
TOD region identification, and function characterization for the
megacities. In the meantime, the results provide support for the
government to formulate public policy to construct a TOD city.

Index Terms— Function characterization, region identification,
region partition, transit-oriented development (TOD), urban
data.

I. INTRODUCTION

THE process of urbanization leads to significant growth in
urban population and rapid sprawl of urban space. In this

process, more and more citizens spread to live in suburb,
while most infrastructure (i.e., employment, commerce, and
so on) still concentrate in old towns. Such imbalanced devel-
opment engenders increasing social costs, including traffic
congestion, energy shortage, and environmental deterioration.
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Fig. 1. Example of TOD regions.

Facing these tough issues, governments have recognized that
the idea of using transit-oriented development (TOD) in reduc-
ing automobile dependence and improving the sustainability
of transportation activities, which aims to design an urban
form in a relatively high-density, compact and mixed form and
to provide high-quality, efficient mass transportation services,
together with a pedestrian-friendly environment [1].

Universally, a TOD region is a walkable neighborhood
centered around public transit stops (such as metro stations,
bus stops, and so on) and typically with a mix of land uses
(i.e., residential and commercial) [2], as shown in Fig. 1
where the red dots represent the public transit stops, the gray
colored areas represent the residential or commercial sites,
the blue lines describe the public transit routes, and the
dotted lines describe the TOD regions. These pedestrian-
friendly and mixed-function arrangements are able to facilitate
activity participation within TODs. Although some specific
services are provided in other parts of a city (i.e., in other
TODs), citizens can take public transport available in TOD to
access these services. Hence, TOD policy maximizes transit
ridership and nonmotorized mobility, which is an answer to the
unsustainable, car-dependent, and transit-poor urban form that
nearly characterizes the growth of modern cities. Nowadays,
the TOD concept has spread worldwide and acquired fruitful
achievement in practice, such as San Francisco, Copenhagen,
and Hong Kong. However, contemporary works on TOD
remain at the stage of theoretical introduction and statistical
analysis [3], which cannot catch up with the actual need
for urban development. In this paper, we will consider the
significant role of different types of real-time urban data on
discovering effective TOD regions.

Benefiting from the advance in wireless technique and
popularity of ubiquitous terminals, the information of urban
elements, such as individuals, vehicles, and surroundings, can
be captured systematically, forming urban big data, including
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geographical data, traffic data, commuting data, and so
forth [4]–[6]. Spatial structure analysis and region function
discovery with urban data have drawn extensive attention
among academics. For instance, a polycentric structure is veri-
fied in several metropolia with the evidence extracted from taxi
trajectories, passenger flows, or telecommunication records
[7], [8]; a labeling region function is implemented via well-
equipped ubiquitous sensors on cars and human beings [9],
[10]. These works confirmed the effectiveness of multisource
urban data in characterizing city morphology. However, there
is no work to explore the potential of such heterogeneous
urban data for investigating the TOD region discovery. In this
paper, we aim to leverage heterogeneous urban data to answer
three critical questions in TOD research.

1) What region will look like under TOD concept?
2) Which regions have the potential to be TODs?
3) How to construct these potential regions to meet TOD’s

need of mixed function?

To achieve the aforementioned goals, we put forward
a series of data-driven algorithms. For the first question,
the region partition, we propose a maximal clique and clus-
ter combination algorithm and a connected component-based
cluster algorithm to merge public transit stations within a
certain range into representative ones as region centers, and
then, the Voronoi algorithm [11] is applied to locate region
boundaries according to cluster centers. The second question
can be answered by our proposed transportation importance-
based random walk method, which makes it easier to randomly
walk to nodes with higher link importance and further to
identify the most valuable regions to be TODs. To answer
the last question, we introduce a multifactor-based function
characterization approach. It defines a cost function to combine
the land uses influenced by both static linguistic factor and
human mobility factor and then derives the actual distribution
of region functions with gradient descent. We apply the solu-
tions to one of the megacities in China named Hangzhou with
real data sets, where the TOD policy has just been officially
supported recently. The structure of our methods is shown
in Fig. 2.

The major contributions of this paper are summarized as
follows.

1) We tackle three vital issues (region partition, region
identification, and function characterization) in TOD
study utilizing multisource urban data and advanced data
mining techniques. To the best of our knowledge, this
is the first work to explore TODs with large-scale and
real-world data sets in a scientific and systematic way.

2) For region partition, we propose a maximal clique
and cluster combination algorithm and a connected
component-based cluster algorithm that are able to clus-
ter region centers from various public transit stations,
and then, we employ the Voronoi algorithm to locate
region boundaries according to these cluster centers.

3) For region identification, we present a transporta-
tion importance-based random walk method. This
method considers the link importance of diverse public

Fig. 2. Framework of this paper.

transportations in regional networks of megacities,
thereby identifying the most valuable regions to form
TODs.

4) For function discovery, we introduce a multifactor-based
function characterization approach, which defines a cost
function to represent what the region is actually func-
tioning and what the region reflects in both the static and
dynamic levels and then infers the actual distribution of
region functions by gradient descent.

The rest of this paper is organized as follows. An overview
of TOD investigation, spatial structure analysis, as well
as region function discovery is presented in Section II.
Section III introduces the connected component-based clus-
ter algorithm and Voronoi algorithm for region partition.
Section IV gives a description of regional networks and trans-
portation importance-based random walk method for TOD
identification. In Section V, the multifactor-based function
characterization approach is presented. Section VI describes
the data sets and experiments results. Finally, Section VII
concludes this paper.

II. RELATED WORK

A. TOD Investigation

In TOD study, researchers mainly focus on utilizing survey
data to investigate traffic, land use, or population situations
near stops [12]. Kong et al. [13] analyzed the resident travel
behaviors to obtain five predictive features, such as flow, time,
week, location, and bus, and utilized them to predict travel
requirements accurately based on a machine learning model.
After that, they combined the prediction results and station
properties to gain shared bus optimal routes resulted in the
increase in public transportation ridership.

For rail transit-based TOD investigation, Sung and Oh [14]
illustrated the characteristics of TOD planning factors, such
as land use, transit supply service, street network, and urban
design at rail station areas in Seoul. They identified that these
factors have a positive impact on constructing a transit-oriented
city, and some of them need to be carefully applied to high-
density cities. However, their research is only limited to Seoul,
and there is not much discussion about other cities. To make
the study more general, Papa and Bertolini [15] discussed
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the relationship between TOD-form urban spatial structure
and rail-based accessibility in six metropolitan areas. The
comparison demonstrates that rail-based accessibility is higher
where residents and jobs are more concentrated and lower in
areas with higher network connectivity. A limitation of this
paper is the use of an aggregate accessibility indicator without
taking into account the subjective dimension of individual
mobility choices.

For the public transport-based investigation, Cervero and
Dai [16] compared bus rapid transit (BRT) density and
ridership performance in forming TOD based on a survey
of 27 cities. As an investigation, the authors simply used
statistical correlates to list the phenomena. In contrast to the
above-mentioned survey, Kamruzzaman et al. [17] applied the
clustering methods and logistic regression models on the basis
of statistics, treated each census collection district as a unit to
cluster four types of TODs, including residential TODs, activ-
ity center TODs, potential TODs, and TOD nonsuitability, and
they also proved that people living in TODs are significantly
more likely to use public transport.

B. Spatial Structure Analysis

Spatial structure analysis helps to better explore urban
TODs. The hot topics in this research direction are to identify
centers, boundaries, and their characteristics in cities. For spa-
tial structure analysis, there are many perspectives, including
statistics, spatial–temporal graphs, mobile phone data, traffic
data, and so on.

At first, the quantitative comparison of the urban structure
was based on statistics surveys, which is coarse-grained in
evolution. For example, Zhong et al. [18], [19] introduced a
centrality index and its corresponding attractiveness indices
for detecting centers and their spatial impacts using Singapore
travel surveys.

Some researchers use spatial–temporal graphs of human
mobility to analyze city structure. Wang et al. [20] proposed
a collective embedding framework to learn the community
structure from multiple periodic spatial–temporal graphs of
human mobility. Specifically, they first exploit a probabilistic
propagation-based approach to create a set of mobility graphs
from periodic human mobility records. A collective deep
autoencoder method is then developed to collaboratively learn
the embeddings of points of interest (POIs) from multiple
spatial–temporal mobility graphs. In addition, they develop
an unsupervised graph-based weighted aggregation method to
align and aggregate the POI embeddings into the representa-
tion of the community structures.

Mobile phone data, implying human behavior and inter-
actions, are widely used in analyzing spatial structure at
present. It is of vital importance for businesses, government,
and institutes to understand how peoples’ behaviors in the
online cyberspace can affect the underlying computer network,
or their offline behaviors at large [21]. Louail et al. [7], [8] had
an exhaustive analysis of hotspots in 31 Spanish cities. They
argued that the spatial structure of hotspots can distinguish
monocentric and polycentric cities, and the essential differ-
ence between these cities is the proportion of flows between

these hotspots. Likewise, Chen et al. [22] focused on hot
lines between districts identified by two indexes, density and
diversity. As for regional boundary, Ratti et al. [23] demon-
strated that the geographically cohesive regions inferred from a
telecommunications database in Great Britain correspond well
with administrative regions.

Making use of traffic data to indicate urban structure also
makes a series of valuable progress. Kong et al. [24] pro-
posed a human mobility pattern of functional regions through
analyzing the quantitative relationship between passengers
getting on and off taxis in every period. Rinzivillo et al. [25]
found a good match between the clusters formed by GPS
tracks and the existing administrative borders in Pisa. Dis-
similar to the above-mentioned efforts, the socioeconomic
borders generated by smart card records are different from
the existing administrative ones, and some new communities
emerge leading to a polycentric urban form in Singapore [26].
The same polycentric phenomenon appears in London with
evidence of large subway flows organizing around a limited
number of activity centers according to [27]. However, it is
traditionally challenging to model large-scale heterogeneous
human mobility data (HHMD), since the data are collected
from different sources to reflect distinct mobility patterns.
Fu et al. [28] developed a general collective learning approach
to model the HHMD at an individual level toward identifying
and quantifying the urban forms of residential communities.
Specifically, their proposed method exploits two geographic
regularities among HHMD.

C. Region Function Discovery

Earlier region function assessment relied on the on-site
investigation and questionnaire [10]. Apart from the con-
sumption of manpower and time, the reliability is seriously
influenced by subjective factors, such as the personal expe-
rience of investigators. Later, using remote-sensing image
data to classify regions got noticed, and the comparison of
various processing algorithms is made in [39]. Chen et al. [29]
introduced two novel fine-tuned community detection algo-
rithms to divide different regions and evaluate the community
quality. By these two algorithms, they can assess the region
functions and quality measurements by splitting and merging
the network structure. Another kind of location semantics data,
POI, can also be applied to cluster similar regions as well
[30], [31]. Besides, Meng et al. [32] studied the problem
of clustering moving objects in a spatial network, and they
introduced two trajectory clustering algorithms and proposed
a framework based on cluster block.

Recently, movement trajectory data, such as taxi trace,
smart card payment, and user-generated content, provide alter-
native solutions to understand regions, and the connection
between human mobility pattern and land uses has been
pointed in some works. Like what Wang et al. [40] thought,
how to dynamically observe and predict movement trajectory
to ensure the low resource usage is a great challenge. For
instance, Qi et al. [33] observed that get-on/off value of taxi
passengers can depict the social activity dynamics in regions.
Similarly, Peng et al. [34] found that people travel for three
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TABLE I

MULTIFACTOR APPROACHES OF REGION FUNCTION DISCOVERY MENTIONED IN THE RELATED WORK

purposes on workdays, including commuting between home
and workplace, traveling from workplace to workplace, and
others such as leisure.

Counting on the detailed location in taxi traces,
Yuan et al. [35] extracted origin–destination (OD) informa-
tion, combined with POIs, to discover functional zones with
Dirichlet-multinomial regression. Liu et al. [36] adopted the
concept of “source-sink” in ecology for identifying how dif-
ferent types of land uses influence trip generation at different
times. Pan et al. [37] designed six features to characterize
OD pattern, and the combination of these features achieved a
promising recognition accuracy using support vector machine
as a classifier. The idea of OD pattern extraction can also be
used to dealing with smart card records [10], [38]. Especially,
building on the achievement in [35], Yuan et al. [9] added
payment records and presented a collaborative-filtering-based
approach to further enhance the performance. Additionally,
user-generated contents not only point out the location but
also contain user property, which is also a good medium to
study topic distributions, such as in [41] and [42].

We do the summary about the method of region function
discovery mentioned in the related work, which shown in
Table I. From the previous description, we can see that TOD
study still stays on the phase of statistics and analysis of
survey data, whose reliability is profoundly affected by the
time, place, and investigator. However, a megacity is a complex
and dynamic system, which is hardly clarified by a single
and static data set. Moreover, the current progress made in
the related directions, such as spatial structure analysis and
region function discovery, cannot reveal the inherent property
of TOD, such as public transport centered (the TOD region can
be regarded as the center of public transport, such as subway
station and bus stop) and mixed functions (a TOD region may
have the mixed land use, such as residential, commercial, and

business). Therefore, utilizing multisource and real-time data
with advanced research techniques is desperately needed in
TOD research, which differs this paper from the previous ones.

III. TOD REGION PARTITION

TOD policy emphasizes the core status of public transit, and
the coverage is also influenced by field conditions. However,
most works on TOD only focus on a circle area, of which
the center is subway station and the radius is a few hundred
meters. Such coarse-grained partition falls behind the policy
requirements. To overcome the disadvantage of traditional
approaches, we conduct a more meticulous and data-driven
study following the TOD concept in this section.

Generally, public transit not only refers to subway but
also includes bus and BRT, which jointly form the urban
public transportation system and all play an essential role
in daily traveling. Hence, we consider these three public
travel modes in determining region centers. Such consideration
brings a direct problem: the huge number and redundancy
of stations. The solution to this problem is our proposed
connected component-based cluster algorithm in Section III-A,
since stations often gather near buildings with specific features
and residents share a similar human mobility pattern around
there.

As for the border of TOD, there is no exact definition,
as long as TOD covers a pedestrian-friendly environment,
such as the walking distance within 5–10 min. In reality,
we prefer the nearest stops for traveling and the nearer
commercial centers for leisure, even the workplaces as near
to our homes as possible. This idea coincides with the
nearest neighbor principle of the Voronoi algorithm. Thus,
we apply the Voronoi algorithm to locate the region boundary
in Section III-B.
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A. Region Center Clustering

Merging similar stations in a certain area as the region
center is the target of this part. Clustering in machine learning
is to group a collection of objects in such a way that the
objects in the same cluster are more similar than those in
different clusters [43]. Among cluster algorithms, K -means is
the most popular one. Nonetheless, there exist two problems
in embedding K -means in our research: 1) K -means requires
user to give the cluster number K in advance, but at present,
we cannot easily determine how many aggregated stops are
appropriate; 2) K -means randomly selects K objects as cen-
troids in the initialization process, of which the randomness
leads to the instability of cluster results, so it demands repeated
randomization in centroids to get better results.

To overcome the above-mentioned shortcomings and bet-
ter solve the practical problems, we proposed a connected
component-based cluster algorithm, which is also an improve-
ment of K -means. Algorithm 1 presents the pseudocode of the
proposed cluster method. First, we add edges between two
nodes (stops) m and n of which the distance is less than d
(Lines 2–6). Through such processing, several connected com-
ponents are formed in the network, and we denote the nodes
in each connected component as T {S1, S2, . . . , Sn} (Line 7).
Next, for any connected component (cluster) S in T (Line 8),
we find the farthest two nodes m and n (Lines 9–12). If the
distance of m and n is larger than 2d , which implies that this
cluster S can be divided into two clusters at least, we choose m
and n as initialized centroids to execute K -means and generate
two clusters S′ and S′′ (Lines 13–17). Otherwise, we can
think that the distance between the node and its centroid is no
more than d , and hence, the loop will end (Line 18). At last,
we calculate the average value of nodes pi in each cluster Si

(Lines 19–21), and this is the position of region center.
From the procedure of the proposed connected component-

based cluster algorithm, we can see that the uncertainty of
K value and the instability of cluster results caused by
random selection are solved by choosing farthest two nodes in
connected components as centroids in the initialization process
of K -means. The presented method introduces a graph theory
into clustering, which has universality in solving the clustering
problem related to map, graph, network, and so on. Note that a
distance parameter d is brought in the new approach, whereas
it is relatively easy to be identified according to the actual
requirement. For instance, following the concept, a TOD is
suitable to be built within 5–10 min walk, about 400–800 m,
which can be regarded as d .

B. Region Boundary Locating

After clustering region centers, the next step is to locate
region borders. The Voronoi algorithm is applied here, which
avoids the imperfect coverage and overlapping phenomena in
the previous studies. Specially, the Voronoi algorithm parti-
tions a plane X into regions r (called Voronoi cell) based
on a set of points p (called seed). For each seed pi , there
exists a corresponding region ri containing all the nodes x
closer to that seed pi than to any others p j , as shown in the

Algorithm 1 Pseudocode of Connected Component-Based
Cluster Algorithm

assume all stops as nodes;
for all node pair u, v do

if Distance(u, v) < d then
Add Edge(u, v);

end if
end for
record nodes in each connected component

T {S1, S2, . . . , Sn};
for all S in T do

for all node pair u, v do
calculate Distance(u, v);

end for
find farthest two nodes m, n in S;
if Distance(m, n) > 2d then

execute K -means(m, n) and generate S′, S′′;
delete S from T ;
add S′, S′′ to T ;

end if
end for
for all Si in T do

calculate average value pi ;
end for

Fig. 3. Example for Voronoi.

following equation:

ri = {x ∈ X |D(x, pi ) ≤ D(x, p j ) for all j �= i}. (1)

Take Fig. 3 as an example. The blue dots are the seeds,
and the convex polygons are Voronoi cells. Each cell consists
of the nodes whose distance to the corresponding seed is less
than its distance to any other seeds. The edges of cells are the
points equidistant to the nearest seeds.

In this paper, we treat all clustering stations generated from
connected component-based cluster algorithm in Section III-A
as the seeds in the Voronoi algorithm, and then, the study area
will be divided into Voronoi cells that are all TOD candidates.
After the partition, we can assume that citizens in a region are
more likely to take public transportation at the corresponding
cluster stations, while they not easily crossover to another
region for a remote station.
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Fig. 4. Regional networks.

IV. TOD REGION IDENTIFICATION

In Section III, we partition the study area into regions that
are all TOD candidates. As we know, the random walk model
is remarkable for its characteristic of integrating rich informa-
tion of nodes and links simultaneously, which is widely used
in a network analysis. Nonetheless, basic random walk ignores
the importance of link, which cannot reflect the different kinds
of transits playing a different importance in the TOD policy.
To this end, we introduce a transportation importance-based
random walk method for identifying TODs.

A. Regional Networks

In order to identify the most valuable regions from these
candidates, the first task is to build regional networks shown
in Fig. 4. As described in Section III, we have acquired a few
cluster stations and their corresponding cells that constitute the
node set V in regional networks. Afterward, if two regions
are connected by a public transit with two adjacent cluster
stations, we add an edge between these two regions, all of
which compose the edge set E . More than that, we take three
kinds of public transports into account, i.e., bus, BRT, and
subway, represented by different colors in Fig. 4. Different
kinds of transports impact the construction of TODs to dif-
ferent extents, which drives us to endow different weights to
different connections. The detailed description of weights is
in Section IV-C. In consequence, the regional networks can
be noted as a weighted graph represented by G = (V , E).

B. Random Walk Model

The task here is to identify the most valuable regions
to be TODs, which is to find the most valuable nodes in
regional networks. A random walk model is embedded as the
foundation model for region identification. It evaluates each
node with a rank score, which is determined by two factors:
1) the number of nodes that this node connected to; 2) the
importance of these nodes. The formal definition is presented
in the following:

−−→
RW [vi ] = 1 − α

N
+ α

∑

v j ∈M(vi )

−−→
RW [v j ]
L(v j )

(2)

where
−−→
RW is the rank score vector and

−−→
RW [vi ] is the rank

score of node vi . M(vi ) represents a set containing all the
neighbors of node vi , and L(v j ) denotes the number of
neighbors node v j has. Besides, N is the total number of nodes
in the networks, and α is the probability that the walker will

continue to walk to the next neighbor, which is generally set
as 0.85 [44].

Equation (2) shows the score of a node in one step. For all
nodes in the whole networks, the random walk process that is
an iterative process is defined as

−−→
RW (t+1) = α S̃

−−→
RW (t) + (1 − α)q (3)

where
−−→
RW (t) is the rank score vector in the t th step and q

is a row vector of which form is (0, . . . , 1, . . . , 0). S̃ is the
transform matrix representing the probability for each node
skipping to other nodes. The iteration process will end when
the model assigns each node vi with a stable rank score−−→
RW [vi ]. Then, we sort nodes in accordance to their scores
and select TopN nodes as most valuable regions.

C. Link Importance

Basic random walk assumes that the weights of edges
are the same. Hence, it defines the element si, j in S̃ as
1/L(p j ), which means that the walker transmits to the node’s
neighborhoods with the same probability. Such setting cannot
reflect different relationship strengths between the nodes in
the networks. Therefore, we assign the edges with related
weights according to the quantity and quality of connections
formed by various transport modes and denote the weight as
link importance L I .

To be specific, the edges in regional networks are produced
by transportation lines, and the number of lines connecting
two regions reflects the relationship strength between them to
a great extent. Thus, we assume the numbers of bus, BRT,
and subway lines connecting node vi and v j is mi, j , ni, j , and
ki, j , respectively. Furthermore, the quality of transportation
modes should be taken into account as well. For instance,
rail transit provides large capacity and high-speed services,
which attracts more citizens to take, and further motivates an
increasing number of researchers to construct TODs around
rail transit stations. Therefore, the quality of these three modes
is assigned by wm , wn , and wk in this paper. Combining the
two factors mentioned earlier, the link importance between
nodes vi and v j is calculated by the following equation:

L I (vi , v j ) = mi, j wm + ni, j wn + ki, j wk . (4)

Thereafter, the transform probability is in proportion to the
link importance, which is described as

si, j = L I (vi , v j )∑
vk∈M(vi )

L I (vi , vk)
. (5)

As presented earlier, we introduce edge features into the
network structure and present a transportation importance-
based random walk model. It is easy for this model to
randomly walk to nodes with higher link importance and
further to identify the most valuable regions to be TODs.

V. TOD REGION FUNCTION CHARACTERIZATION

Since TODs generally contain diverse functions to sup-
port diverse life needs, what actual functions do the regions
have? The actual distribution of region functions is not only
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formulated by urban planners but also evolves as people’s
activities. In other words, the actual distribution is influ-
enced by static semantic factor and human mobility factor.
Thus, a multifactor-based function characterization approach
is needed.

Discovering the distribution of POIs, which typically
contain the coordinate and category of building (see
Section VI-A2 for details), is a way to preliminarily
understand the functions under static factor. For instance, if a
region consists of massive shopping plazas and restaurants,
it has a high probability to support commercial function.
A term frequency–inverse document frequency (TF-IDF)
approach [45] from information retrieval is applied here to
characterize the static function. Human mobility is another
factor to affect region function. For instance, along with the
increase in staff, new infrastructure emerges in the workplace,
which brings new features to this area. The topic model from
natural language processing has been proven to discover
region function under the view of human mobility from taxi
trajectories [5], [35], which is employed in this paper.

The distribution information we acquire so far can be
regarded as the actual function reflecting in a static and
dynamic way, that is, the actual function has these two
appearances at the same time. Inspired from machine learning,
we define a cost function to represent what the region is
actually functioning and what the region function reflects in
both the static and dynamic levels and then infer the actual
region function by gradient descent.

A. Static Function Discovery

We can consider the relationship between POI data and
static function from two aspects, i.e., the absolute number
and the relative number, and this idea can be realized by the
TF-IDF method. To be specific, if the absolute number of
a specific kind of POI is high, the corresponding function
should possess a larger proportion in this area. For instance,
a region with a lot of shopping centers and restaurants should
undertake higher proportion of commercial function. The
term frequency (t f ) term in TF-IDF can present the absolute
number, as shown in the following equation:

t fi, j = ni, j∑C
k=1 ni,k

(6)

where t fi, j denotes the t f value of the j th POI category
in region ri , ni, j is the number of POIs belonging to j th
category in region ri , and C is the number of POI categories.

Furthermore, a special kind of POI rarely appears in other
regions, even if the absolute number is not high in this region,
but it still can feature this region. For example, a university
town is surrounded by abundant restaurants, even if the
absolute number of restaurants is high, but the region where
these universities locate still should give priority to education.
This can be described by inverse document frequency (id f )
term, as shown in the following equation:

id f j = log
R

|{i |ni, j �= 0, i = {1, 2, . . . , R}}| + 1
(7)

TABLE II

ANALOGY BETWEEN REGION-FUNCTION EXPLORATION
AND DOCUMENT-TOPIC DISCOVERY

where id f j is the id f value of the j th POI category and R is
the number of regions.

Afterward, the t f -id f value of the j th POI category in
region ri can be obtained by multiplying two variables men-
tioned earlier, as shown in the following equation:

t f -id fi, j = t fi, j × id f j . (8)

At last, we formulate a vector
−→
Yi for each region ri to

denote the distribution of POIs in the following equation:

−→
Yi = (t f -id fi,1, t f -id fi,2, . . . , t f -id fi,C ). (9)

Through the earlier calculation, we can acquire the distri-
bution of POIs in each region, which represent the region
function from the perspective of static semantic.

B. Dynamic Function Exploration

Taxi trajectories produced by human activities reflect region
functions from the dynamic angle, since people usually travel
from regions with similar functions to another similar region at
a similar time, such as from residential areas to workplaces at
workday morning and from residential to entertainment areas
at weekends. The mobility data set of social vehicles cannot
be acquired because of the limitations of privacy and security,
while the data set of taxis can be easily obtained through
various methods. Besides, both taxis and social vehicles can
represent the peoples’ urban mobility pattern, so we can
use taxi trajectories data to replace the public vehicle [46].
The relationship between human mobility pattern and region
function can be uncovered by topic models. In this regard,
we make an analogy between exploring functions of a region
and discovering topics of a document, as shown in Table II.
Given all the words of each document in document collection,
latent Dirichlet allocation (LDA), a topic model, can infer the
distribution of topics for each document. Accordingly, given
all the human mobility patterns of each region in study area,
LDA can infer the distribution of functions for each region.

We formalized the analogy as follows. For region ri ,
we define an R × T leaving matrix Li , where R is the
number of regions and T is the number of time slots. The
element Li [ j, k] denotes the taxi trajectory from region ri

to region r j in the time slot tk , and the value of element
represents the number of corresponding trajectories. Similarly,
we define an R × T arriving matrix Ai , and the element
Ai [ j, k] denotes the taxi trajectory from region r j to region
ri in the time slot tk . Thereafter, we regard region i as a
document, and all the regions form the document collection.
Moreover, the elements Li [ j, k] and Ai [ j, k] are all specific
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Fig. 5. Topic modeling in region-function exploration.

TABLE III

TIME SLOTS FOR WEEKDAYS AND WEEKENDS

mobility patterns, which are treated as words, and the element
value means the occurrence number of words.

To better depict the analogy, we take Fig. 5 as an example.
All the regions in the figure compose the document collection,
each of them is a document, and each element representing
a mobility pattern is a word. For instance, digit “7” in the
bottom-right corner of region r1 indicates that the mobility
pattern traveling from r1 to rR in time slot tT occurred seven
times.

Note that the trajectories under consideration are all occu-
pied taxi trips with a certain origin region and a certain
destination region, only which imply human mobility. Besides,
in terms of the time slot, we show the traffic conditions
on weekdays and at weekends in Fig. 6. According to the
figure and mobility purposes, we form nine slots (T = 9)
in Table III. Moreover, due to the uneven division of slots,
the values of each element in matrixes are changed to the
average number of the corresponding trajectories.

By the analogy described earlier, we acquire all the patterns
in each region, which means all the words in each document.
Then, LDA can infer the distribution of functions for each
region. For region ri , the output of LDA is a K -dimensional
vector, as shown in the following equation:

−→
Z i = {zi,1, zi,2, . . . , zi,K } (10)

where
−→
Z i is the topic distribution of region ri , zi,k is the

proportion of topic k in region ri , and K is the topic number.
Thereby, we calculate the similarity of region ri and r j in
terms of dynamic function as follows:

λi, j = cos <
−→
Z i ,

−→
Z j > . (11)

C. Actual Function Estimation

The actual distribution of region functions is influenced by
many factors, i.e., static semantic factor and human mobility
factor. Although the inherent function is largely determined by
the static semantic factor, the evolution of function is driven

Fig. 6. Traffic conditions changing over time. (a) Weekdays. (b) Weekends.

by human activities. Thus, combining these two factors is
essential in function characterization.

1) Cost Function Definition: We define a cost function J to
represent the differences between what the region is actually
functioning and what the actual function reflects in both static
way and dynamic way, as shown in (13).

In (13), R is the region number and W balances the pro-
portion of static and dynamic functions.

−→
X i is the distribution

of actual function in region ri that we desire,
−→
Y i is the static

function distribution that we have obtained in Section V-A, and
λi j represents the similarity of region ri and region r j in terms
of dynamic function that has been calculated in Section V-B.
In addition, since the actual distribution of region functions
cannot deviate from its inherent features a lot, we initialize−→
X i with

−→
Y i

J = 1

R2

R∑

i=1

R∑

j=1

W (cos θi j − λi j )
2 (12)

cos θi j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−→
X i · −→

Y j

‖−→X i‖ × ‖−→Y j‖
, i = j

−→
X i · −→

X j

‖−→X i‖ × ‖−→X j‖
, i �= j

(13)

W =
{

R − 1, i = j

1, i �= j.
(14)
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As shown in (13), for i = j , we define the cost as the dif-
ference between the actual function and its static appearance,
which is obtained by TF-IDF from POIs. For i �= j , the cost
is defined as the difference between the actual function and its
representation in terms of human mobility, which is extracted
from taxi trajectories by LDA. In this way, the total cost is
the square sum of these differences, which is denoted as J .

2) Gradient Descent: After the definition, we desire the
minimum point of cost function, which means that the smaller
the differences between actual function and its two appear-
ances, the better. In this paper, we utilize a gradient descent
algorithm to find the local minimum point of cost function J
around static function distribution as the actual distribution of
region functions.

A gradient descent algorithm searches the local minimum of
a cost function along the negative gradient direction iteratively.
Since the gradient direction is decided by derivative function,
we first take the partial derivative of J with respect to
Xik(i = 1, 2, . . . , R, k = 1, 2, . . . , C) as follows:

∂ J

∂ Xik
= 1

R

R∑

j=1

2W ×
( −→

X i · −→
Z

‖−→X i‖ × ‖−→Z ‖
− λi j

)

×
⎛
⎜⎝

Zk × ‖−→X i‖ × ‖−→Z ‖ − ‖−→Z ‖
‖−→X i‖

× −→
X i · −→Z × Xik

‖−→X i‖2 × ‖−→Z ‖2

⎞
⎟⎠

(15)

−→
Z =

{−→
Y j , i = j−→
X j , i �= j

(16)

W =
{

R − 1, i = j

1, i �= j.
(17)

Therefore, the iterative update process of Xik is given as
follows:

X ′
ik =

⎧
⎨

⎩
Xik − α

∂ J

∂ Xik
, Xik �= 0

Xik , Xik = 0
(18)

where α is the learning rate and we set it as 1 in this
paper. According to the equation, if region ri has no POI
in the kth category (Xik = 0), we assume that the region
dose not undertake this kind of function and Xik will not
change with the iteration (X ′

ik = Xik ). Otherwise, Xik will
take one step proportional to the negative of the gradient
(X ′

ik = Xik−α(∂ J/∂ Xik)). Note that in each iteration, the sum

of components in
−→
X i is not equal to 1 (

∑
k Xik �= 1), hence,

we normalize
−→
X i , and it can be proved that the normalization

of
−→
X i cannot affect the value of J .

The update process will not end until the number of itera-
tions reaches its threshold, of which we regard as the achieve-
ment of local minimum of J . At this point, Xik shows the
proportion of kth actual function in region ri , and thereby,

−→
X i

records the distribution of actual functions in region i which
we desire. In addition, the achieved region functions combine
both the static semantic factor and the human mobility factor
in function characterization, which reflects the situation more
accurately.

TABLE IV

STATISTICS OF THE PUBLIC TRANSIT DATA SET

TABLE V

STATISTICS OF POIs

TABLE VI

STATISTICS OF TAXI TRAJECTORIES

VI. EXPERIMENT

To validate the effectiveness of our proposed methods,
we utilize real data sets in Hangzhou to conduct the experi-
ments with MATLAB and Python. In the following, we intro-
duce three data sets utilized in the experiment and then show
the results and analysis.

A. Data Sets

We use three data sets in the evaluation as follows.
1) Public Transit: The data set consists of three kinds

of public transit including bus, BRT, and subway in Febru-
ary 2015. We mainly focus on the information related to lines
and stops in these modes, such as latitude and longitude. The
corresponding numbers are summarized in Table IV.

2) Points of Interest: The POI data set contains
189 885 records in 2015 with the name, longitude, latitude,
and category. The detailed category information and its corre-
sponding number are shown in Table V.

3) Taxi Trajectories: We utilize a GPS data set generated
by Hangzhou taxis in March 2014, and some properties of the
data set are shown in Table VI. Note that we use Manhattan
distance [47] to show the average trip distance. Moreover,
we find that the data on March 11st only contain partial
information which cannot imply human mobility, and thus,
we eliminate the GPS records on that day and use the rest of
the occupied trips to conduct the experiments.

Although the collecting intervals of the above-mentioned
three data sets are not in the same time dimension,
the urban form cannot significantly change within one year.
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Fig. 7. Comparison among region partition methods. (a) Nonclustering method. (b) Connected component-based partition method. (c) Connected component-
based clustering method (proposed method).

Therefore, we think that those data sets describe the same state
of the city.

B. Evaluation on Region Partition

We compare region partition results generated by two tradi-
tional methods [method 1) and 2)] with our proposed method
[method 3)]: 1) nonclustering method, which regards all stops
as seeds in the Voronoi algorithm to partition the study area;
2) connected component-based partition method, which forms
connected components of all stops with the threshold of d
and regards the average value in each component as seeds
in Voronoi; and 3) connected component-based clustering
method, which generates the cluster centers and divides the
region division based on these cluster center. The difference
between method 2) and 3) is whether it gets the cluster centers
or not. The data set associated with public transit stops, which
is introduced in Section VI-A1, is used here, and d is set as
800, which is in line with the pedestrian-friendly distance in
TOD concept.

Fig. 7 shows the region partition results of three approaches.
All the transit stops are treated as region centers in Fig. 7(a),
which causes the problem of producing regions that are
too small and too dense, and it is unrealistic to develop
a single stop as a TOD unit as well. Thus, merging stops
effectively must be first solved. From Fig. 7(b), the con-
nected component-based partition method can generate dif-
ferent sized regions, and however, the sizes are generally
large. In addition, the regions in downtown are larger than
those in suburb. This is because prosperous areas have numer-
ous and dense stops which results in the wide coverage
of connected component, while the situation in the remote
district is opposite. Such results are not beneficial for studying
TOD. The results of our proposed method are presented
in Fig. 7(c), which generates 645 regions with moderate
sizes in both downtown and suburb. Moreover, the center
and the border of regions also accord with actual situations,
such as regional boundaries, which imitate the trend of the
Qiantang River. From the experiment results, our proposed
method, connected component-based clustering, can solve the
problem of redundant stops and divide the study area into
reasonable regions; meanwhile, it avoid the determination
of K value and instability of clustering results in K -means
algorithms.

C. Evaluation on Region Identification

The comparison is the random walk model, which deems
that the relationship between nodes is equally important. The
data utilized here are the public transit data set, as introduced
in Section VI-A1. In terms of parameter setting, the total
number of nodes in the networks N is 645 as the region
number; the iteration ends when the difference of all nodes’
RW values is less than 10−16; the ratio of transit modes’
quality is wm : wn : wk = 1 : 2 : 3, which takes capacity,
frequency, and speed into account. In the experiment, RW val-
ues achieve convergence via about 100 iterations, and we
choose TOP 50 nodes as TOD regions. Although new towns
at different levels from Hangzhou urban planning1 cannot
be exactly equivalent to TOD regions, they also reflect the
direction of city development to a great extent. Hence, we use
these new towns as a kind of label in region identification.

The experiment results are presented in Fig. 8. The com-
paring method can identify a certain number of new towns in
urban planning in Fig. 8(a), whereas those identified regions
are very scattered, which cannot reflect the fact that the
development of a central region often brings prosperity to the
neighborhood. From Fig. 8(b), we can see that the proposed
method identifies most new towns and achieves the effect of
overall decentralization and local concentrations simultane-
ously.

Specifically, we take Blocks A–C in Fig. 8 as an example.
For Block A, our proposed method can identify the new
towns of Linping (middle), Jiuqiao (bottom left), and Xiasha
(bottom right) accurately in Fig. 8(b), while the comparing
algorithm is insufficient to recognize the surrounding of three
centers and label some regions which are not in urban planning
instead in Fig. 8(a). Block B covers the area near West
Lake and Qianjiang CBD, which is the center of Hangzhou
with the highest development level and the largest coverage.
Compared with the random walk [see Fig. 8(a)], our method
can mirror this fact more precisely [see Fig. 8(b)]. Similarly,
with regard to North Town in the bottom-right corner of Block
C, our proposed transportation importance-based method is
still outstanding.

From the earlier discussion, the proposed method can
identify the TOD regions effectively. This is due to the

1Hangzhou Urban Planning Files,http://www.hzplanning.gov.cn/index.aspx?
tabid=903d39b5-a4d8-41eb-bec0-13b068e0bf54
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Fig. 8. Comparison between region identification methods. (a) Random walk method. (b) Transportation importance-based random walk method (proposed
method).

Fig. 9. Comparison between function characterization methods. (a) Region functions in which MuF discovers but TF-IDF does not. (b) Functions in which
TF-IDF treats as region functions but MuF does not.

consideration of different importance of public transit in
forming connections and further facilitating valuable regions
with higher rankings. Admittedly, the identification in some
remote areas with sparse data remains to be improved, such
as the southeast of Hangzhou.

D. Evaluation on Function Characterization

POI and taxi trajectory data sets are utilized to con-
duct the function characterization experiment. We com-
pare the proposed multifactor-based function characterization
approach (MuF) with TF-IDF and treat the categories account-
ing for over 25% in function distribution vector as the region
functions. In LDA, the topic number K is 7 which is consistent
with POI categories; the number of iterations is 1000; the
rest parameters are set as default values [48]. In addition,
the iteration number of gradient descent is set as 300.

Function characterization-related results are shown in Fig. 9.
To better illustration, the functions, in which MuF discovers
but TF-IDF does not, are presented in Fig. 9(a); the functions,
in which TF-IDF treats as region functions but MuF does
not, are shown in Fig. 9(b); the functions, in which both
two methods label, are not displayed. Overall, MuF can
characterize the region with various kinds of functions [see
Fig. 9(a)] and weaken the proportion of ubiquitous residence
and commerce [see Fig. 9(b)]. Moreover, the adjustments

involve the whole city. To be specific, MuF discovers the
education function at the top-right corner of Block B, which
matches the existence of several educational institutions such
as two campuses of Zhejiang University, and the other scenic
functions in Block B are located in West Lake and Xixi
Wetland Park, as shown in Fig. 9(a). In contrast, TF-IDF
cannot reveal the education function and mainly regards the
rest as residence and commerce functions from Fig. 9(b).
In addition, MuF characterizes Block A with scenic and
commerce and Block B with workplace, scenic, and education,
which are all consistent with the actual situations. Through
the analysis, MuF can discover region functions effectively,
especially for those functions that are not ubiquitous but
can characterize the region features, such as scenic and
education.

E. Analysis of TOD Regions

In the previous experiments, we have verified the effective-
ness of the proposed methods in terms of region partition,
region identification, and function characterization. Hereby,
we formally give the function distributions of identified TOD
regions and their surroundings, as shown in Fig. 10. The
underpainting represents the function with the first share,
the dot shows the second proportion function, and the circle
around the dot is the third. From Fig. 10, we can see that
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Fig. 10. Function distributions of TOD regions and their surroundings.

the functions of TOD regions are relatively independent and
distinctive, which accords with the goal of function diffusion in
Hangzhou urban planning. Concretely speaking, the left part of
Block A is Jiuqiao Commercial Town that indeed undertakes
commerce function at present; the right part is Xiasha that
is planned to be an industrial and education zone, but it
lacks industrial function according to the current construction
status. Furthermore, Yuhan Group in Block C achieves the
initial success toward the residential suburb and scientific
research base, while North Town in Block B still needs
further development to meet the requirement of a business
and financial town.

VII. CONCLUSION

In this paper, we managed to answer the three critical
problems in TOD study, especially for megacities leverag-
ing heterogeneous urban data. The experiments, which were
conducted on three real data sets, including public transit
data, POIs, and taxi trajectories, proved the effectiveness of
the proposed methods in their respective fields. Moreover,
we made a careful analysis of some representative blocks,
which also offers scientific data support for the government
to make policy for the development of a megacity, using
Hangzhou as an example.

As a first step on data-driven studying TOD, the data quality
directly affects the experimental outcomes, which has been
embodied by the unsatisfied results in some remote small
areas and some complex situations in heartlands. Hence, high-
quality data sets can facilitate the ongoing research. Fur-
thermore, we strive to further improve the performances of
introduced approaches in each research area.
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