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Abstract
The mechanism why two strange scholars become collaborators has been extensively
studied from the perspective of social network analysis. In academia, two scholars may col-
laborate with each other more than once, which means that scientific collaboration is to
some extent sustainable. However, less research has been done to explore the sustainabil-
ity of scientific collaboration. In this paper, we examine to what extent the collaboration
sustainability can be predicted. For this purpose, an extreme gradient boosting-based collab-
oration sustainability prediction model named CSTeller is devised. We propose to analyze
the sustainability of scientific collaboration from the perspectives of collaboration duration
and collaboration times. We investigate factors that may affect collaboration sustainabil-
ity based on scholars’ local properties and network properties. These factors are adopted
as input features of CSTeller. Extensive experiments on two real scholarly datasets demon-
strate the effectiveness of our proposed model. To the best of our knowledge, this is the first
attempt to explore scientific collaboration mechanism from the perspective of sustainabil-
ity. Our work may shed light on scientific collaboration analysis and benefit many practical
issues such as collaborator recommendation since a scientific collaboration is not a one-shot
deal.

Keywords Scholarly big data · Deep learning · Relation mining · Coauthor network

1 Introduction

In modern academia, collaboration is often an important component of scientific research.
Scientific collaboration brings scholars together to solve complex scientific problems [21].
Previous studies indicated that the scientific collaboration is becoming more and more
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popular. Fruitful researchers tend to be more collaborative [42]. Due to the importance of
scientific collaboration, many efforts have been done to understand the mechanism of scien-
tific collaboration in order to promote scientific collaboration [14, 43, 52], i.e., collaborator
recommendation [53].

Scientific collaboration mainly contains four stages including foundation, formulation,
sustainment, and conclusion [42]. Most previous research focuses on analyzing factors that
may affect the formulation stage [24, 45, 47, 49]. For example, the problem of link predic-
tion has been extensively studied from the similarity perspective [24, 46]. However, what
happens after a new collaboration is established? It is known to all that scientific collab-
oration is not a one-shot deal [16, 38]. It is not surprising that two scholars collaborate
with each other more than once. In other words, scientific collaboration is sustainable (see
Figure 1). The collaboration sustainability refers to the continuous state of scientific coop-
eration between two scholars. Such state is uncertain, which may be long term or short term.
Specifically, we explore the collaboration sustainability from two perspectives, i.e., collab-
oration duration (CD) and collaboration times (CT), where CD stands for how long will a
new collaboration last and CT stands for howmany times will these two scholars collaborate
with each other in the future (see Figure 1). Thus, how to find a sustainable collaborator?
This work is different from the existing studies in link prediction [33, 46] and friend recom-
mendation [28, 32]. Previous studies in scientific collaboration mainly focus on whether two
scholars will collaborate with each other. We try to figure out the mechanism of sustainable
collaboration and predict the sustainability of scientific collaboration.

Analyzing the sustainability of scientific collaboration is important. It has been proven
that life partners resulted from sustainable collaboration have a significant impact on pro-
ductivity and reputation [38]. It is not easy for scholars to find new collaborators. It is vital
for scholars to maintain the academic network effectively. Scholars want to know once a
new connection is built how long will it last and how often will it be. In this paper, we try
to explore the following questions after the connection is established: 1) How long will this
collaboration last? 2) How many times will this collaboration be? 3) Can the sustainability
of this collaboration be predicted?

Figure 1 An example of sustainable scientific collaboration
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Predicting the sustainability of scientific collaboration is challenging. First, the nature of
scholarly big data makes it difficult to extract needed factors [51]. The scale of scholarly
data is nowadays very huge. Second, the CD and CT between scholars are uncertain. They
follow the long-tail distribution (See Figure 2) [4]. Most collaborations will not last for a
long time. It is difficult to build a prediction model with such unbalanced data [17, 31].
Third, factors affecting the sustainability of scientific collaboration are uncertain since few
research has been done to analyze the mechanism of sustainable collaboration. Meanwhile,
the interplay of many factors may confound the prediction performance.

To deal with the problems above, we propose a novel extreme gradient boosting model
named CSTeller (Collaboration Sustainability Teller) to predict the sustainability of a new
collaboration based on the local and network properties [9]. In the scenario of collabora-
tion sustainability prediction, it is important to consider not only the topology of scientific
collaboration network, but also scholars’ various academic characteristics. While previous
works mainly adopt network metrics, CSTeller proposes to profile scholars from two groups
of factors, including personal factors (i.e, academic age, degree, and publication counts)
and social factors (i.e., common neighbors and shortest path). Due to large-scale nature of
scholarly datasets, the CSTeller is designed based on the framework of Extreme gradient
boosting, which has been proven effective its its scalability in many scenarios [1, 2]. We
evaluate the performance of CSTeller based on two scholarly datasets extracted from DBLP
where experimental results show that CSTeller outperforms benchmark machine learning
methods. Our major contributions can be summarized as:

– Problem Formulation. We formulate the problem of collaboration sustainability
prediction from the perspectives of the CD prediction and the CT prediction.

– Feature Selection. We crawl scholars’ local properties including academic ages,
number of publications, and number of collaborators, as well as network properties
including degree and shortest path.
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Figure 2 Distributions of scientific collaboration duration and times
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– Prediction Algorithms. We present a tree-boosting-based collaboration sustainability
prediction model called CSTeller, and conduct extensive experiments on two datasets
to verify the performance of the proposed model.

– New Insight. We propose to study the mechanism of scientific collaboration from the
perspective of sustainability, which will shed light on collaborator recommendation.

The rest of this paper is organized as follows. Section 2 reviews the related work. We for-
mulate the sustainability prediction problem in Section 3. The factors that may determine
the sustainability of scientific collaboration are discussed in Section 4. We present our pro-
posed model in Section 5. Experimental results are shown in Section 6. Finally, Section 7
concludes this paper.

2 Related work

Predicting the collaboration sustainability relies on the power of scholarly big data analysis.
In recent years, scholars are producing an increasing number of publications [7, 22]. It leads
to the emerging of a new research area, scholarly big data [23, 54].

Scientific collaboration, as a research topic, has been investigated by many scholars
in diverse disciplines including information science, social science, computer science, as
well as any discipline where scientific collaboration happens [34, 56]. Scientific collabo-
ration is becoming more and more popular because it has the potential to solve complex
scientific problems and promote scientific research [42]. Previous studies have shown the
continuous increase in the number of co-authored articles in many disciplines within and
across institutions and countries [11]. Meanwhile, co-authored papers will gain more cita-
tions than single-authored papers [37]. A single scholar may not possess all the expertise
or information needed to tackle a complex scientific issue. Funding agencies are promoting
interdisciplinary, inter-institution, and international collaboration.

Scientific collaboration network extracted from coauthor relationship is a typical way to
reveal the collaboration patterns [49, 50]. For example, social scientists have used quantita-
tive methods to investigate the mechanism of scientific collaboration based on co-authored
networks [35, 38]. Newman [35] presented the first investigation on the collaboration net-
work by analyzing different network properties of scientific collaboration network such as
clustering, giant component, centrality, and shortest path. From the career path perspective
of scientific collaboration network, Peterson analyzed 166,000 collaboration records and
found that scientific collaboration networks are dominated with weak collaboration relation-
ship characterized by high turnover rates [38]. However, although tremendous efforts have
been done to analyze the scientific collaboration mechanism, few works have been done to
investigate the sustainability of scientific collaboration.

There are various algorithms that can be used to do predictions. Many machine learn-
ing tools have been developed. Support Vector Machines [55], Decision Trees [39], Linear
Regression [40], K-Nearest Neighbors [27], and Random Forests [5] are some of the popular
algorithms used for prediction. Although these classical methods have achieved great suc-
cess in prediction, each of them has its own shortcomings and practical constraints in terms
of prediction accuracy and time consuming. Our CSTeller model is inspired by the Xgboost
model [9], which is an efficient and scalable variant of Gradient Boosting Machine. It has
been proven to be a powerful tool for several data mining competitions [1].

Few works have been done to reveal the collaboration mechanism after a collaboration
has been established [6, 8]. Scientific collaboration has been studied from the perspective
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of network science [18, 36]. Many efforts have been done to predict the collaborative rela-
tionships from the perspective of link prediction [3, 30, 44]. Meanwhile, the dynamics of
scientific collaboration has been studied from the perspective of time-aware link prediction
based on evolving networks [10, 19, 20, 25].

In reality, collaboration is not a one-shot deal where two scholars may collaborate with
each other more than once. Since it is not easy to find a suitable collaborator, we would like
to know the sustainability of a connection. In this paper, we try to explore the following
questions after the connection is established: 1) How long will this collaboration last? 2)
How many times will this collaboration be? 3) Can the sustainability of this collaboration
be predicted? To tackle these issues, we proposed CSTeller, which is a tree-boosting based
supervised machine learning method, to predict the sustainability of scientific collaboration.
Since few work has been done to explore the mechanism of sustainable collaboration, our
work will shed light on collaboration analysis and collaborator recommendation. This work
is extended from our previous poster paper [50], which is a preliminary work on collabora-
tion sustainability prediction which focuses on feature engineering and regression method
selection.

3 Problem definition

Typically, the task of scientific collaboration sustainability prediction can be formulated as
a regression problem for predicting CD and CT. However, the long-tailed distributions of
CD and CT (see Figure 2) make such prediction inevitably challenging. Meanwhile, the
collaboration between two scholars is not static. The CD may last many years as �t and
they may collaborate m times during the CD �t . From that perspective, we need to infer
the collaboration records after the first collaboration between a scholar pair. It is worth
mentioning that the collaboration sustainability may not be term “long-term collaboration
relationship” because two scholars may merely collaborate few times (i.e., two times) and
such collaboration may last for few years (i.e., one year). In other words, the collaboration
sustainability between two scholars is uncertain.

We formulate the collaboration sustainability prediction issue as two prediction prob-
lems, namely, CD prediction and CT prediction. We assume a collaboration pair i and j .
We define and calculate a set of factors {x1, x2, x3, ...xn} that determine the collaboration
sustainability. For example, x1 can be the shortest path in the entire scientific collaboration
network between these two scholars. The task becomes finding two suitable models f (x, y)

to describe the y1 (CD) and y2 (CT) separately, where the y1 and y2 denote the dependent
variables of factors x.

With the above analysis, our problems can be formally defined as follows:

Given: The collaboration records between a scholar pair i and j extracted from the DBLP
digital library when these two scholars begin their collaboration.

Predict: The collaboration sustainability of this collaboration in terms of CD and CT.

CD prediction and CT prediction are two different problems because the distribution of
these two phenomena is different. For example, the collaboration may last at most 45 years
and the CT may be more than 100 (see Figure 2).

In order to solve these two proposed problems, we firstly analyze the factors that are
closely related with collaboration sustainability in the following section. Then, based on
these factors, we design our prediction model.
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Table 1 Factor definitions

Factors Description

Academic Age (AA) Academic ages of A and B when first collaborating

Number of Publications (NP) Number of publications of A and B before collaboration

Degree (DG) Number of collaborators of A and B before collaboration

Common Neighbors (CN) Number of common neighbors of A and B before collaboration

Shortest Path (SP) Shortest path between A and B before collaboration

4 Empirical analysis of collaboration sustainability

We perform an empirical analysis of the factors that may influence the collaboration sus-
tainability extracted from the DBLP dataset. There are various factors that may drive the
collaboration sustainability such as geographical position, collaboration preference, and
research interest. It is known that more factors may bring better prediction results. A few
work has been done on collaboration sustainability prediction [20, 48]. However, they
mainly focus on link prediction whereas the nature of scientific collaboration is overlooked.
Due to the data limitation and for simplicity, in this paper, we mainly explore two critical
groups of factors including personal factors and social factors, as shown in Table 1. The first
three factors Academic Age (AA) [50], Degree (DG), and Number of publication (NP) are
personal factors. The last two factors Common Neighbors (CN) and Shortest Path (SP) are
the social factors. Note that all these factors are calculated or extracted based on the scien-
tific information network before the collaboration has been established. The dataset used in
this section is the largest giant component of the scientific collaboration network in which
each scholar has more than 10 publications.

4.1 Personal factors

The prediction task for collaboration sustainability between two scholars naturally depends
on the scholars themselves. Personal factors play an important role in both establishing
and maintaining scientific collaboration. Personal factors including academic reputation,

Figure 3 The impact of scholar’s personal factors on CD. The x and y axes represent a academic age, number
of publications, and degree between any two collaborative scholars, respectively
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collaboration preference, and career stages may influence scholars’ collaboration behaviors
greatly.

Figure 3 depicts the relationship between scholars’ personal factors and collaboration
sustainability in terms of CD. In Figure 3a the color of each pixel represents the average
value of CD between two scholars in different AA. The maximum AA considered in this
paper in 50. The graph shows that there has been a marked decrease in the CD with the
increase of AA. The collaboration with beginning scholars (AA � 5) will last longer while
the collaboration between two senior scholars may last only one year. The impact of NP
on CD is shown in Figure 3b, where the maximum NP considered in this paper is 300. We
can see that CD sharply decreases with the increase of NP. Similar trends can be seen from
Figure 3c, where the maximum DG is 300. From Figure 3a, b, and c, we can find out that the
collaboration with beginning scholars who has small AA, NP, and DG will last longer. With
the increase of these personal factors, the CD is likely to decline. The impact of personal
factors on CT can be seen from Figure 4a, b, and c. The overall trends of CT are similar to
CD, where the CT with beginning scholars will last longer and CT declines obviously with
the increase of AA, NP, and NG.

These findings are consistent with the practical situation, which is in line with the find-
ings in weak tie phenomenon where two scholars are in a weak relationship if they are not
familiar with each other [15]. For example, the collaborations between an advisee who has
a smaller AA (NP and DG) and his/her advisor who has a bigger AA (NP and DG) is in
a stable condition and will last for a long time. Usually, an advisee will collaborate many
times with his/her advisor in the process of pursuing a Ph.D. degree. On the contrary, the
collaboration between two senior scholars will last a short time according to Figures 3 and 4.

4.2 Social factors

Aside from the personal factors of scholars, another intuitive factor affecting a collabora-
tion’s sustainability is the social relationship between a collaboration pair. Previous studies
have shown that the social position of a scholar has great impact on his/her academic perfor-
mance [12]. We assume that the collaboration sustainability will be influenced by the social
factors. To explore this assumption, we construct a large scientific collaboration network
from DBLP dataset, where each node represents a scholar and two nodes are considered
connected if the scholars have collaborated with each other. We then extract two simple

Figure 4 The impact of scholar’s personal factors on CT. The x and y axes represent a academic age, number
of publications, and degree between any two collaborative scholars, respectively
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Figure 5 Impact of number of common neighbor between scholars on collaboration sustainability

and basic features between two collaborators from the collaboration network including the
shortest path and common neighbors.

Figure 5 presents the results of social factor analysis. The size of each circle represents
the number of scholars, where a bigger size means that there are more scholars in this
condition. The red line in each subfigure is the fitting curve. The maximum CN and SP
considered in this paper are 50 and 10 respectively. Figure 5 describes the impact of CN
on collaboration sustainability. One unanticipated finding is that with the increase of CN,
both the CD and CT decrease accordingly. Meanwhile, as it can be seen from Figure 6,
with the increase of SP, the CD and CT increase apparently. In reality, most collaborator
recommendation method takes advantages of CN or random walk to find suitable collabora-
tor candidates. The famous social theory triadic closure [26] also indicates that people with
common neighbors tend to become friends. However, our findings suggest that the collab-
oration established from less social similarity will be more sustainable. In other words, the
collaboration between scholars with close social relationship will not last long.

5 Design of CSTeller

In this section, we describe our predictive model CSTeller to forecast the scientific col-
laboration sustainability when two scholars collaborate with each other for the first time.
Specifically, we make predictions both on CD and CT. We first give an overview of
CSTeller. Then, we present each section in detail including tree ensemble, gradient boost-
ing, and feature extraction. Moreover, we give an example showing how to calculate the
input features from the DBLP dataset.

Figure 6 Impact of shortest path between scholars on collaboration sustainability
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5.1 Overview of CSTeller

The CSTeller sustainability prediction model is inspired by the fact that the child is the
father of the man [29], which means that the collaboration sustainability can be forecasted at
the early stage. In this paper, we define the early stage as the time point when two scholars
begin collaborating with each other. Meanwhile, since extreme gradient boosting has been
proven to be a powerful machine learning algorithm both for classification and regression
[9], we adopt it as our foundation. Furthermore, we design many scholarly features for
model training. The overall framework of CSTeller is shown in Figure 7.

– All input features are extracted from the DBLP digital library. The original data is a set
of papers published by scholars in the field of computer science. In order to eliminate
authors who do research only for a short time we limit our research to scholars who have
published at least 10 papers [41]. We reconstruct the collaboration profile of scholars
and gain the collaboration records of any two co-authored scholars. The personal factors
are extracted from the meta data including academic ages, number of publications, and
number of coauthors.

– To extract the social factors, we need to construct the collaboration network, where two
scholars are regarded connected if they have co-authored at least one paper. Meanwhile,
in order to filter out those isolated nodes, we extract the largest connected component of
the collaboration network. Based on this largest connected component, we can calculate
the social factors.

– Since the sustainability prediction is a regression task. The CSTeller conducts a series of
decision trees which is trained with the gradient boosting approach. The tree ensemble
and gradient boosting sections are detailed introduced in the following section.

– The sustainability of scientific collaboration is studied from two perspectives including
CD and CT. Thus, the CSTeller model will do prediction on these two issues.

– Finally, we evaluate the performance of CSTeller with four typical evaluation metrics.

Figure 7 Framework of CSTeller
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5.2 Tree ensemble

The CSTeller model aims to make the prediction of yi (yi can be the CD or times). Given
xi , where xi represents the input features, the prediction task is to find the best parameters
given the training data. In order to find the best parameters that can better describe the
data, people always define a so-called objective function, which usually contains two parts,
training loss and regularization:

Obj (�) = L(θ) + �(θ) (1)

where L is the training loss function and� is the regularization term. The training loss func-
tion L measures the performance of proposed model on training data and the regularization
term � controls the complexity of the model which helps to avoid overfitting.

Similar with XGboost, CSTeller is an ensemble of a set of classification and regression
trees (CART) [2]. The prediction scores of each CART are summed up to get the final score,
which can be calculated as follows:

ŷi =
K∑

k=1

fk(xi), fk ∈ � (2)

where K is the number of ensemble trees, fk means an independent tree, and � is the set of
all possible CARTs. Therefore, we can rewrite (1) as follows:

Obj (�) =
n∑

i

l(yi, ŷi ) +
K∑

k=1

�(fk) (3)

The regularization term � in CSTeller is given by:

�(f ) = γ T + 1

2
λ

T∑

j−1

ω2
j (4)
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where T and ω are the number of leaves and their corresponding scores. γ and λ are
parameters controlling the degree of regularization.

5.3 Gradient boosting

Since (4) uses a function as parameter, it cannot be optimized with traditional optimization
methods in equation space. Thus, we train the model in an addictive manner. Let ŷ(t)

i be the
predictive result of the i-th instance at the i-th iteration, we have:

ŷ
(0)
i = 0

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

...

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft (xi)

(5)

The addictive training method is shown in the algorithm 1. We add ft to optimize the
following objective function:

ϒ(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft (xi)) + �(ft ) (6)

We take Taylor expansion [9] of the objective and define gi = ∂
ŷ

(t−1)
i

l(yi , ŷ
t−1) and

hi = ∂2
ŷ

(t−1)
i

l(yi , ŷ
t−1). Thus we can rewrite (6) as follows:

ϒ̂(t) =
n∑

i=1

[gift (xi) + 1

2
hif + t2(xi)] + γ T + 1

2
λ

T∑

j−1

ω2
j

=
T∑

j=1

[(
∑

iεIj

gi)ωj + 1

2
(
∑

iεIj

hi) + λ)ω2
j ] + γ T (7)

where Ij = {i|q(xi) = j} represents the instance set of leaf j . Thus the optimal leaf weight
ω∗

j can be calculated as:

ω∗
j = − Gj

Hj + λ
(8)

where Gj = ∑
iεIj

gi and Hj = ∑
iεIj

hi . The resulting objective value can be calculated
as:

Obj = −1

2

T∑

j=1

G2
j

Hj + λ
+ λT (9)

In this condition, a smaller Obj means a better tree structure.

5.4 Learn the tree structure

Meanwhile, for each leaf node of the tree, we need to add a split. The change of the objective
after splitting can be calculated as:

Gain = 1

2
[ G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2

HL + HR + λ
] − γ (10)
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where
G2

L

HL+λ
stands for the score on the left leaf,

G2
R

HR+λ
stands for the score on the right leaf,

(GL+GR)2

HL+HR+λ
stands for the score on the original leaf without splitting, and γ represents the

regularization on the additional leaf.

5.5 Feature extraction

We used all these personal and social factors (as shown in Table 1) as the input features to
predict the collaboration sustainability:

Personal factors:

– AA: AA means the academic ages of scholars A and B when they firstly collaborated
with each other. We take advantage of the factor of AA based on the fact that scholars
tend to have different collaboration strategies at different career stages [38]. Apparently,
a PhD candidate will collaborate frequently with his/her advisor.

– NP: NP means the number of publications of scholars A and B when they collaborate
for the first time with each other. A scholar’s publications can, to some extent, reflect
his/her academic performance. Fruitful scholars tend to be more collaborative and may
have a higher reputation.

– DG: DG means the number of collaborators of scholars A and B when they firstly
collaborate with each other. Similar with NP, DG can also reflect the collaboration
strategies for different scholars.

Social factors:

– CN: CN means the number of common neighbors of scholars A and B before they
collaborate with each other. Based on the famous social theory triadic closure [26],
people share more common neighbors tend to be connected in the future. Thus, we
adopt the CN to measure how similar two scholars are in the network.

– SP: SP means the shortest path between scholar A and B in the scientific collaboration
network before they collaborate with each other. The SP is used to measure how close
two scholars are in the network.

The academic age is calculated by the investigated year minus the year he/she firstly
publishes a paper. All the input features are normalized into [0, 1] in order to improve
the learning efficiency. The normalized method we adopt in this paper is the min-max
normalization:

x∗ = x − xmin

xmax − xmin

(11)

Note that all the input features are calculated exactly the time when two scholars begin
their collaboration. In order to calculate the shortest path between two scholars, we con-
struct the collaboration network for each collaboration. For example, if scholar A and B

begin their collaboration in the year 2000, we will extract all papers published before
that. It cannot be as accurate as day or month because the exact time point of the month
or day is incomplete in the row data. Then, the collaboration network NetworkAB is
constructed based on the coauthorship extracted from these papers. Finally, the shortest
path is calculated based on the largest connected component of this collaboration network
NetworkAB .
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Figure 8 shows a brief example of how we extract all the input features from the collab-
oration records in DBLP. In this figure, we aim to predict the collaboration sustainability
between scholar Linda and scholar Bob. Linda begins her research from 2014 and she
has four papers co-authored with three collaborators Feng, Wei, and Ivan. Bob begins his
research from 2005 and he has three papers co-authored with two collaborators Feng and
Ivan. Meanwhile, Linda and Bob begin their collaboration in 2015. Thus, the AA of Linda
and Bob are 2 and 10 respectively. The NP of Linda and Bob are 4 and 3 respectively. The
DG of Linda and Bob are 4 and 2 respectively. On the other hand, from their collaboration
records, we can construct the collaboration network in 2015. Note that many other scholars
are considered to construct the collaboration network to calculate the social factors between
Linda and Bob. For simplicity, we merely show the basic collaboration network in this
figure. Thus, the CN between Linda and Bob are 2 including Feng and Ivan. The SP between
Linda and Bob is 2. Finally, we can gain all the input features to build our prediction model.

6 Performance evaluation

In this section, we design extensive experiments to evaluate the performance of CSTeller
with two real datasets. Since this is the first work proposed to predict the collaboration sus-
tainability, there is not too much room for comparison algorithms. Therefore, we compare
our model with the typical machine learning method with four popular evaluation metrics.

Meanwhile, in order to investigate the contribution of each input feature on the perfor-
mance of CSTeller, we employ the “jackknife” [13] method with three cases: (1) Removing
one factor and predicting with the rest factors (Removing); (2) Using only one factor to do
prediction (Adding), and (3) Predicting with all factors (All).

All experiments are performed on a 64-bit Windows-based operation system, with a 4-
duo and 2.6-GHz Intel Xeon CPU, 128-G Bytes memory. All the experiments are realized
with Python.

6.1 Datasets

We extract two distinguished investigated groups from the DBLP and APS datasets, respec-
tively. These two scholarly datasets record the meta data of a paper. The DBLP dataset

Figure 8 An example of feature extraction
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indexes more than 2.3 million articles in the field of computer science. The dataset con-
tain the meta data of papers including authors, title, pages, years, crossref,(in) proceedings
or journals, etc. The DBLP dataset can be freely accessed from http://dblp.dagstuhl.de/
xml/. The APS dataset is comprised of over 450,000 articles dating back to 1893 in the
field of Physics. The APS dataset includes DOI, journal, volume, issue, first page and last
page or article id and number of pages, title, authors, affiliations, publication history, PACS
codes, table of contents heading, article type, copyright information, and citation relation-
ships. Researchers can request access to the APS dataset by filling out a simple Web form
from https://journals.aps.org/datasets. Based on the meta data of these two datasets, we can
construct the scientific collaboration network and calculate all the input features.

Since the APS dataset does not provide unique author identifiers, two distinct scholars
may have the same full or short name. To this end, we conduct a comprehensive name
disambiguation process based on the idea in [41]. Meanwhile, to exclude authors who leave
academia at their early academic career, we limit our analysis to scholars who (1) have
published at least 10 papers, (2) have published at least one paper every 5 years, (3) their first
collaboration should happen at least 20 year before 2016, (4) have no publication record by
2011 (five years before 2016). The first three principles are designed to limit our research
on authors who are active in academia. The last two principles are proposed to ensure a
sufficient time to calculate the collaboration sustainability between two scholars after first
collaboration. The statistics of these two datasets can be seen from Table 2. We can see that
the collaboration among scholars in APS are more sustainable.

6.2 Evaluationmetrics

Collaboration sustainability prediction is a regression problem instead of classification. In
a regression problem, we need to predict a series of continuous value. Thus, in order to
evaluate the performance of CSTeller, we adopt four typical metrics including MAE (Mean
Absolute Error), MSE (Mean Square Error), PCC (Pearson’s Correlation Coefficient), and
CCC (Concordance Correlation Coefficient). Given the true value of y (y can be CD or
times), and the predictive value ŷ, the MAE is given by:

MAE = 1

n

n∑

i=1

|ŷ − y| (12)

The MSE is given by:

MSE = 1

n

n∑

i=1

(ŷ − y)2 (13)

The PCC is given by:

PCC =
∑n

i=1(yi − y)(ŷi − ŷ)
√∑n

i=1(yi − y)2
√∑n

i=1(ŷi − ŷ)2
(14)

Table 2 Statistics of two investigated groups

Group Nodes Edges Duration Times

DBLP 185739 3443845 2.669 2.983

APS 14022 355992 3.077 3.825

http://dblp.dagstuhl.de/xml/
http://dblp.dagstuhl.de/xml/
https://journals.aps.org/datasets
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where the y is the mean of y and ŷ is the mean of ŷ.
The CCC is given by:

CCC = 2syŷ

s2y + s2
ŷ

+ (y − ŷ)2
(15)

where syŷ is the covariance between y and ŷ, s2y and s2
ŷ
are the variances of y and ŷ respec-

tively. From the definitions of these metrics, we can see that a better prediction results will
have low MAE and MSE, and high PCC and CCC.

6.3 Baselinemethod

To our knowledge, the specific issue we address has not been tackled before. Hence, we
selected strong machine learning algorithms for regression. Specifically, we compare our
proposed CSTeller with a series standard regression model, including Linear Regression
(LR) and Support Vector Machine (SVM). Meanwhile, we compare CSTeller with Time-
aware Link Prediction (TLP) [10] which is a state-of-the art method for evolving link
prediction. Specifically, TLP is a supervised classification methods considering network
topology similarity metrics.

In the experiments, we use all the potential factors as the input feature in all the compar-
ison method. Generally, we illustrate the prediction result of each method on two datasets
to show the predictability of collaboration sustainability, whereas we only use CSTeller to
explore the factor contribution with “jackknife” approach.

6.4 Effect of training data size

We perform our experiments on two different research groups. We divide each group into
two subsets, the training set and the testing set, where the training set is used to train the
parameters of our model and the testing set is used to evaluate the performance of the pro-
posed model. Specifically, we randomly select twenty percentage of the data of each group
as the testing set. In order to explore the performance of the CSTeller in terms of training
data size, we perform experiments on different fractions of training data size ranging from

Figure 9 Performance of CSTeller and baseline methods on CD prediction over different training sets with
DBLP dataset
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10% to 90%. Meanwhile, the k-fold cross validation is adopted in all experiments in order
to enhance the stability and fidelity of our model.

Figure 9 depicts the performance of CSTeller and baseline methods on CD prediction in
terms of different fractions of training set on DBLP dataset. From the Figure 9a, we can
see that the MAE of all methods declines with the increasing of factions of training set,
which means that prediction task will benefit from large amount of training data. When the
fraction of training set goes up from 20% to 90%, take DBLP for example, the MAE of
CSTeller decreases from 2.32 to 1.69 and the MAE of LR decreases from 2.45 to 1.91. On
the other hand, we can observe from this figure that the proposed model CSTeller always
has better performance than baseline methods. In particular, CSTeller outperforms 11 and
12 percentage on DBLP and APS datasets respectively in terms of MAE compared with LR
method.

Moreover, CSTeller always achieves better results on CD prediction than LR in terms of
PCC (Figure 9b). From this figure, we can get the conclusion that with the increasing frac-
tions of training data, all prediction methods will achieve better CD prediction results and
CSTeller always outperforms baseline methods in terms of MAE and PCC. As discussed
before, the prediction of collaboration sustainability contains not only the CD prediction
but also the CT prediction. Figure 10 illustrates how the fractions of training set influence
the performance of CSTeller and baseline methods with CT prediction on DBLP dataset.
Figure 10a shows the CT MAE of CSTeller and baseline methods on DBLP and dataset.
We can see that with the increasing fractions of training set, all method will achieve bet-
ter performance, which is similar to the trend of CD prediction. Meanwhile, the MAE of
CSTeller is always lower than other methods, which means that CSTeller has better pre-
diction results. Another observation is that with the increasing fractions of training set, the
MAE of CSTeller decreases faster than other methods, which shows that CSTeller can better
take advantages of a larger dataset.

6.5 Results on different datasets

In order to evaluate the performance of CSTeller in terms of different datasets, we per-
form experiments on two different research groups (see Table 2). Specifically, the scholars

Figure 10 Performance of CSTeller and baseline methods on CT prediction over different training sets with
DBLP dataset
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Figure 11 Performance of CSTeller and baseline methods on CD prediction over different training sets with
APS dataset

in DBLP have at least 10 publications indexed in the DBLP digital library and the schol-
ars in APS have at least 80 publications indexed. From Table 2, we can see that both CD
and CT among scholars in APS are higher than scholars in DBLP. Thus, we can evaluate
the performance of CSTeller more comprehensively by running experiments on these two
distinguished datasets. The results on APS dataset are illustrated in Figures 11 and 12. We
can see on these two figures that similar with the results on DBLP dataset, CSTeller always
achieve the best performance than baseline methods. By comparing the results on DBLP
and APS datasets, we can easily find that CSTeller can better predict the CD on APS than
on DBLP in terms of MAE and PCC. The reason is that the collaboration relationships in
APS dataset is more stable.

6.6 Factor contribution analysis

In order to predict the collaboration sustainability among scholars, we have introduced two
groups of factors including personal factors and social factors.

Figure 12 Performance of CSTeller and baseline methods on CT prediction over different training sets with
APS dataset
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Table 3 Factor contribution analysis on CD prediction with DBLP dataset

CD of DBLP Rules MAE MSE PCC CCC

AA Removing 1.721 7.568 0.431 0.312

Adding 1.905 8.302 0.322 0.186

NP Removing 1.724 7.564 0.431 0.311

Adding 1.891 8.285 0.334 0.201

CN Removing 1.867 8.097 0.365 0.229

Adding 1.826 8.240 0.335 0.201

SP Removing 1.727 7.591 0.428 0.309

Adding 1.932 8.425 0.347 0.174

DG Removing 1.718 7.544 0.338 0.309

Adding 1.884 8.157 0.275 0.216

All 1.702 7.044 0.453 0.332

To explore the contributions of these factors, we adopt the “jackknife” approach [13]
with three cases: (1) Removing one factor and predicting with the rest factors (Removing);
(2) Using only one factor to do prediction (Adding), and (3) Predicting with all factors
(All). Based on these strategies, we can find out the individual contribution that each factor
supports to the overall prediction task. Tables 3, 4, 5, and 6 show the MAE, MSE, PCC, and
CCC for the three cases with different research groups including CD and CT prediction. We
can see that the contribution of each factor has different influence.

Table 3 shows the CD prediction results with “jackknife” approach on DBLP dataset.
In Table 3, 10 percentage drops (from 1.702 to 1.867) in MAE value by the removal of
CN factor (Removing strategy) which shows that the CN factor plays an important role in
predicting the CD. At the same time, the relative little decrease by the removal of other
input factors indicates that remaining factors provide limited contributions in CD predic-
tion. When we take advantages of the Adding strategy, the CN factor still achieves the best
performance, though the DG factor also has a remarkable effect on the CD prediction. Simi-
lar results can be seen on MSE, PCC, and CCC. Furthermore, when using all the factors, the

Table 4 Factor contribution analysis on CT prediction with DBLP dataset

CT of DBLP Rules MAE MSE PCC CCC

AA Removing 2.123 19.405 0.341 0.205

Adding 2.255 19.770 0.271 0.137

NP Removing 2.130 19.516 0.335 0.197

Adding 2.221 20.415 0.283 0.148

CN Removing 2.211 19.718 0.301 0.161

Adding 2.258 20.472 0.242 0.110

SP Removing 2.123 19.236 0.342 0.206

Adding 2.303 21.115 0.236 0.105

DG Removing 2.124 19.642 0.338 0.202

Adding 2.238 20.021 0.275 0.141

All 2.016 18.943 0.348 0.209
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Table 5 Factor contribution analysis on CD prediction with APS dataset

CD of APS Rules MAE MSE PCC CCC

AA Removing 2.066 10.799 0.520 0.418

Adding 2.272 12.134 0.423 0.300

NP Removing 2.068 10.844 0.522 0.420

Adding 2.216 11.455 0.452 0.343

CN Removing 2.179 11.050 0.480 0.371

Adding 2.237 12.503 0.362 0.232

SP Removing 2.090 10.964 0.509 0.407

Adding 2.385 12.645 0.353 0.229

DG Removing 2.068 10.847 0.508 0.408

Adding 2.207 11.380 0.473 0.362

All 2.028 10.617 0.597 0.421

CSTeller will achieve the best performance, which indicates that all the considered factors
are useful in predicting the CD with DBLP dataset.

The CT prediction results with “jackknife” approach on DBLP dataset are shown in
Table 4. From this figure, we can see that the CN factor still plays the most important role in
predicting the CT. Specifically, when using the Removing strategy with the CN factor, the
MAE is 2.11, which is the highest MAE among other Removing strategies. That is to say,
the CN factor is most closely related to the CT prediction. When using the Adding strategy,
the factor NP can achieve the best result on MAE, which means that the NP factor can be
used to better predict the CT alone. Meanwhile, the All strategy always achieves the best
performance in terms of MAE, MSE, PCC, and CCC, which indicates that all the considered
factors are useful in predicting the CT with DBLP dataset.

Table 5 shows the results of CD prediction on APS dataset. From this table, we can
see that all the selected factors are important in predicting the collaboration for scholars
who have fruitful publications both by Removing strategy and Adding strategy. Different
from the CD prediction for DBLP in Table 3, the factor DG plays the most important role

Table 6 Factor contribution analysis on CD prediction with APS dataset

CT of APS Rules MAE MSE PCC CCC

AA Removing 3.206 59.824 0.357 0.234

Adding 3.357 62.620 0.318 0.189

NP Removing 3.216 61.951 0.360 0.232

Adding 3.306 59.513 0.336 0.212

CN Removing 3.324 66.151 0.341 0.206

Adding 3.348 62.066 0.229 0.103

SP Removing 3.212 62.046 0.361 0.232

Adding 3.446 66.657 0.265 0.139

DG Removing 3.211 65.295 0.357 0.226

Adding 3.332 63.739 0.331 0.197

All 3.199 58.717 0.370 0.240
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observed from the Adding strategy. Meanwhile, the All strategy still has the best perfor-
mance in terms of MAE, MSE, PCC, and CCC compared with the Adding and Removing
strategies.

The results of CT prediction on APS dataset are shown in Table 6. Similar to the results
in Table 4, the CN factor has the best performance in terms of MAE observed from the
Removing strategy. When using the Adding strategy, the NP factor has the lowest MAE,
3.306, which means that NP factor is most closely related with the CT prediction on APS
dataset. Meanwhile, the All strategy has the best performance compared with the other two
strategies.

In summary, when predicting the scientific collaboration sustainability both on DBLP
and APS, the CN factor is most crucial to achieving better performance, followed by the DG
and NP factor. Meanwhile, the All strategy can achieve the best performance compared with
the other two strategies which demonstrates the effectiveness of our selected input factors.

7 Conclusion

In this paper, we introduce a general model to predict scientific collaboration sustainability.
First, we formulate the collaboration sustainability prediction task into two sub-questions
including CD prediction and CT prediction. Then, we investigate two groups of factors
including personal factors and social factors. These factors are academic ages, number of
publications, number of collaborators (degree), common neighbors, and shortest path of two
collaborators. Based on these input factors, we propose a novel extreme gradient boosting
model named CSTeller to predict the sustainability of scientific collaboration. Extensive
experimental results show that our proposed model outperforms the baseline method. The
factors that determine the sustainability of scientific collaboration are analyzed with the
“jackknife” approach.

Since this work is the first of its kind to study the task of collaboration sustainability pre-
diction, there is much room for future studies in this direction. More factors may be adopted
to improve the precision of this prediction task. Besides, the collaboration sustainability
may result from extensive interaction among scholars. Therefore, more efforts can be done
to explore the mechanism of collaboration sustainability, which may shed light on the col-
laboration mechanism and help policy makers to promote collaboration across institutions,
disciplines, and countries.
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