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A B S T R A C T

In the fast-growing scholarly big data background, social network technologies have recently aroused widespread
attention in academia and industry. The concept of academic social networks is created precisely in the con-
text of scholarly big data, which refers to the complicated academic network formed by academic entities and
their relationships. There are a wealth of scholarly big data processing methods to analyze the rich structural
types and related information about academic social networks. Nowadays, various academic data can be easily
obtained, which makes it easier for us to analyze and study academic social networks. This study investigates
the background, the current status, and trends of academic social networks. We first elaborate on the concept
of academic social networks and related research background. Secondly, we analyze models based on nodes’
types and timeliness. Thirdly, we review analytical methods, including relevant metrics, network properties,
and available academic analysis tools. Furthermore, we sort out some key mining technologies for academic
social networks. Finally, we systematically review representative research tasks in this domain from three levels:
actor, relationship, and network. In addition, some academic social networking sites are presented. This survey
concludes with the current challenges and open issues.

1. Introduction

In the context of Web 2.0, a great deal of research has been carried
out in the academia and industry, resulting in a great deal of academic
information (Wu et al., 2014). Academic inputs and outputs have cre-
ated unprecedented opportunities for studying the structure and evo-
lution of science (Fortunato et al., 2018). With the rapid populariza-
tion and development of science and technology, the data are gradually
shifting from the traditional storage mode to the digital one. Academic
information is generated basically in the form of scientific documents,
technical reports, project proposals, papers and other types of resources
(Khan et al., 2016). In addition, academics and researchers from around
the world can not only produce a large volume of academic documents
but also share their research results through educational materials (Xia
et al., 2017) such as patents and slides. The term of Scholarly Big Data
(SBD) is generated by rapidly growing academic resources.

1.1. Scholarly big data

Due to the rapid growth of academic entities and their relation-
ships, academic data has reached the “5V” characteristic of “Big Data”,
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namely Volume, Velocity, Variety, Value, and Veracity (Wu et al.,
2014), which is called Scholarly Big Data (SBD). It includes conference
papers, journal articles, books, patents, slides and experimental data,
etc (Williams et al., 2014b). Effective use of SBD is not only signifi-
cant for scholars to understand scientific development and academic
interactions, for policymakers to better resolve resource sharing issues,
but also for enterprises to guide the development directions. Therefore,
how to excavate valuable information from millions of SBD is a pressing
issue.

The purpose of SBD analysis is to solve academic problems under
the background of Science of Science (Light et al., 2014). The in-depth
analysis of SBD can not only enable researchers to make more effec-
tive use of available resources but also contribute to the development
of academia and industry. However, systematic research on this sub-
ject is insufficient. Previously, it is hard for researchers to achieve valid
academic information because existing tools and technologies did not
satisfy SBD analysis requirement. In addition, the high dimensions and
large sizes of SBD pose certain challenges for data analysis (Fan et al.,
2014). However, with the increasing popularity of the Internet and the
development of relevant analytical techniques, we can now take full
advantages of this valid information. A series of online digital libraries
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Fig. 1. Framework of academic social network survey.

and academic service platforms, for example, AMiner, Microsoft Aca-
demic Search (MAS), DBLP, Google Scholar (GS), and CiteSeerX, store
millions of data on authors, publications, citations and other relevant
information (Arif, 2015). SBD analysis can be divided into collaborator
search, research management, expert discovery systems and recommen-
dation systems (Khan et al., 2016).

1.2. Social networks

Social network analysis is a popular technique in recent years, exert-
ing an increasingly important role in many fields, such as social media
networks, transportation networks (e.g., traffic control), epidemiolog-
ical networks (e.g., epidemics’ spread modeling) and web networks
(e.g., building the structure of the World Wide Web). It is used not
only to analyze online social media applications such as Twitter and
Facebook but also to provide integrated services in the area of sci-
entific research. Social Networks (SNs) are collections of individuals
or organizations that are interrelated in a particular situation like
collaboration and socialization. In SNs, nodes and edges are used to
represent entities and their interactions, respectively, to help us ana-
lyze and mine information. The analysis of SNs can identify the net-
work relationship formed in the process of information dissemina-
tion.

The analysis method of SNs is an effective way to study SBD. In
academic networks, researchers establish relationships through a vari-
ety of academic activities (Fu et al., 2014). At present, the research
on different patterns of communication among various entities of SBD
has attracted the great interests of researchers (Luo and Hsu, 2009).
In addition, technological advances in data analysis, and recent devel-
opments in SNs’ visualization software facilitate the research of these
relationships as well as dynamic display (Luo and Hsu, 2009).

1.3. Social networks in scholarly data

Science of Science (SciSci) characterizes science as a complex, self-
organizing and evolving network of academic information (Fortunato
et al., 2018). In SBD, social networks formed through academic activi-
ties and information are called Academic Social Networks (ASNs). This
expression can study ASNs from diverse geographical and temporal
scales to characterize patterns of new scientific fields and accelerate
the potential of science. There are many ways to establish ASNs, where
co-authors are the most formal form of academic activities (Fu et al.,
2014). By studying the citation networks, we can reveal the choices
and trade-offs of researchers in their careers, and this is also one of the
research topics in SciSci. In addition, some works have shown that well-
connected academic social networks tend to be more prolific (Lopes et
al., 2011), so they are imperative to study for us.

Currently, there are many surveys which use SNs in many fields,
for example, Anomaly Detection (Kaur and Singh, 2016), Signed Net-
work Mining in Social Media (Tang et al., 2016), Mobile Social Net-
works (Hu et al., 2015), Vehicular Social Networks (Rahim et al., 2017)
and Social Influence in Social Networks (Peng et al., 2018) but there is
no overview of SNs related to SBD. Meanwhile, there have been some
surveys on SBD. Khan et al. (2017b) investigated the current research
trends of scholarly data, identified the challenges for the development
of academic data platforms and mapped future research directions to
different phases of the life cycle of big data. Xia et al. (2017) conducted
a comprehensive review of Big Scholarly Data from several aspects:
scholarly data management, scholarly data analysis methods and repre-
sentative research issues. At present, there is no study to review ASNs
comprehensively.

In this work, we present a survey of the popular emerging ASNs
field. To the best of our knowledge, this paper is the first to pro-
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Fig. 2. Typical entities and their relationships.

vide a comprehensive review of SBD using SNs analysis. We systemat-
ically summarize the topics in ASNs from four perspectives: modeling,
analysis, mining technologies and applications. In addition, we briefly
present some useful ASNs tools and popular websites. Our aims are to
fully interpret the current state of research in ASNs and to understand
the opportunities and challenges of future research.

The framework of this paper has been illustrated in Fig. 1. Section 2
elaborates on the definition and properties of ASNs. Section 3 presents
ways of modeling ASNs. Section 4 elaborates on ASNs analysis, and
Section 5 covers some key mining technologies in ASNs. Section 6
describes some promising research applications and useful ASNs sites.
Finally, Section 7 discusses critical open issues and challenging prob-
lems.

2. Academic social networks

In this section, we elaborate on the concept of Academic Social Net-
works, typical entities and their relationships, and available scholarly
datasets.

2.1. Definition

Academic Social Networks (ASNs) are complex heterogeneous net-
works formed by a large number of entities (publications, scholars,
etc.) and their relationships (citations, co-authorships, etc.) (Tang et
al., 2008; Wu et al., 2014). Scholars have carried out plenty of research
topics and data mining tasks. Here are some examples, author rank-
ing (Amjad et al., 2015, 2017), author interests finding (Daud, 2012),
rising star finding (Daud et al., 2013, 2015), academic recommenda-
tions (Guns and Rousseau, 2014) and community detection (Khan et
al., 2017a). Attention over ASNs has led to many ASNs sites to pro-
vide SBD collection and analysis. For example, Microsoft Academic and
Google Scholar provide paper searching, and CiteULike focuses on cita-

tion relationship services. Based on a variety of websites, we can easily
get SBD information online.

2.2. Academic entities and relationships

Fig. 2 offers typical entities and relationships in ASNs. Nodes
typically represent academic entities, including authors, publications,
venues, institutions, and the terms (extracted from contents, abstracts
or keywords of papers). Different types of entities have different
attributes or labels that can help us analyze them more richly.
Links between entities generally represent relationships, including co-
authors, citations, co-citations, bibliographic couplings and co-words.
Each type of relationship can form a different network, bringing a series
of perspectives for research interaction and scholarly communications.
Co-authors focus on finding communication patterns, bibliographic cou-
pling, co-citation and co-word relationships which emphasize identify-
ing research topics, whereas citation relationships pay more attention
to the transfer of knowledge flows.

2.3. Academic semantic ontologies

Semantic publishing is a kind of journal publishing form with
enhanced semantics (Shotton, 2009). It enriches the expression form
and knowledge content of publications through Web and Semantic Web
technology. It can also improve the operability, relevance and interac-
tion of publication information, and ultimately achieve intelligent pub-
lishing. Ontology is a formal and detailed description of the shared con-
ceptual system (Peroni and Shotton, 2012). Therefore, researchers can
use ontology technologies to achieve the semantic description of doc-
ument objects and their knowledge content, and then carry out rich
research work. Table 1 briefly describes some commonly used ontolo-
gies.
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Table 1
Basic characteristics of academic semantic ontologies.

Ontology Description Available Link

Bibliographic Ontology (BIBO) Description of bibliographic resources metadata
on the Semantic Web.

http://purl.org/ontology/bibo/

Semantic Web Applications in Neuroscience
(SWAN)

The citation ontology module to define
bibliographic resources.

http://swan.mindinformatics.org/spec/1.2/citations.html

FRBR-aligned Bibliographic Ontology (FaBiO) Description of academic endeavors and references. http://purl.org/spar/fabio/
Citation Typing Ontology (CiTO) Characterization of citation relationships. http://purl.org/spar/cito/
Bibliographic Reference Ontology (BiRO) Defining bibliographic records, references, and

compiling them into collections and lists,
respectively.

http://purl.org/spar/biro/

Citation Counting and Context Characterization
Ontology (C4O)

Allowing the number of text citations to the cited
source to be recorded.

http://purl.org/spar/c4o/

Publishing Roles Ontology (PRO) Describing the role of authors, editors, reviewers,
publishers, etc. in the publication process.

http://purl.org/spar/pro/

Document Components Ontology (DoCO) Providing a generic structured vocabulary for
document elements, describing structural and
rhetorical document components.

http://info.deepcarbon.net/schema/

Table 2
Basic characteristics of available academic datasets.

Dataset Discipline Size Description Available Link

Aminer Computer Science Over 2 million articles The dataset contains the links
between researchers, conferences
and publications.

https://aminer.org/billboard/AMinerNetwork

APS Physics Over 450 thousand
articles

This database contains the corpus
of Physical Review Letters,
Physical Review and Modern
Physical Review.

http://journals.aps.org/datasets

DBLP Computer Science Over 2.3 million articles All important journals on
Computer Science are tracked.

https://dblp.uni-trier.de/

Microsoft Academic
Graph (MAG)

Multidisci-plinary 167 million articles The journal is classified
according to SciMAGO Journal
Classification into 27 different
disciplines.

http://research.microsoft.com/en-us/projects/mag/

Open Academic Graph Computer Science 64 million matching
links

It is generated by linking MAG
and AMiner.

https://www.openacademic.ai/oag/

Open Research Corpus Computer Science
and Neuroscience

Over 7 million articles It contains information such as
external citations, essay links,
abstracts, titles, years, and more.

http://www.anc.org/

2.4. Available academic datasets

Currently, there are many search engines and digital libraries that
provide their datasets to help researchers studying ASNs. Academic
datasets are integrated academic documents that contain many types of
general data. Many of them are freely downloadable, such as AMiner,
American Physical Society (APS), DBLP, Microsoft Academic Graph
(MAG), Open Academic Graph and Open Research Corpus. We list some
basic characteristics and available URLs for these datasets in Table 2.
We can obtain these entities from the bibliographic databases which
contain metadata about the publications (e.g., authors, affiliations,
pages, year), their citing publications (e.g., cited references, citation
counts). Fig. 2 shows typical entities and their relationships.

3. Academic social networks modeling

Academic social networks can be constructed in various topological
structures. The academic social behavior of scholars may change over
time. In static networks, nodes never crash and edges maintain oper-
ational status. Scholars found that static networks can lead to a stable
high level of collaboration (Rand et al., 2014). With the increasing scale
of networked data, the structure of a network becomes more complex.
Thus the computing time and complexity increase at the same time.
Hence, Benson et al. (2016) used graphlet based on subnetworks and
developed a generalized framework of higher-order connectivity pat-

terns. Mostly, real-world networks are dynamic. In dynamic networks,
nodes or edges may appear or disappear so that dynamic network
topology changes over time. Dynamic networks are extensively used
because they can describe both compositions and interactions (Rand et
al., 2011). Another vital reason is that the ASN itself is dynamic. Plen-
tiful researchers have gained significant results by exploring dynamic
network structure. It is found that repeated positive interactions can
promote collaboration between both individuals and within groups.
However, dynamic ASNs are difficult in modeling since the topologi-
cal structures are hard to be described.

Different kinds of networks are suitable for modeling different rela-
tionships. According to the differences of nodes in the network, ASNs
can be classified into homogenous academic social networks and het-
erogeneous academic social networks.

3.1. Homogenous academic social networks

Homogenous ASNs refer to those networks whose nodes represent
same entities. For example, in Fig. 3, the center of the figure is an
example of the toy model of paper relationships and around it is several
typical ASNs extracted from it. Fig. 3a is the co-authorship network in
which X and Y co-author paper A and paper E, author Y and author Z
co-author paper C. Fig. 3b is the citation network in which papers are
connected by direct citation links. Papers published earlier are cited by
papers published later, that is, arrows are drawn from earlier papers
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Fig. 3. Typical kinds of scholarly homogenous networks.

to latter ones. Fig. 3c is the co-citation network of the toy model in
which A and B are co-citations by C and D, A and D are co-cited by
E. Fig. 3d is the bibliographic coupling network. We can see C and D
are bibliographically coupled as they both cite A and B. Fig. 3e is the
co-word network while B, C, E all belong to the field of machine learn-
ing.

Co-authorship Networks. Co-authorship networks are one of the
most widely used ASNs. In co-authorship networks of Fig. 3a, each
node in the co-authorship network refers to an author. Edges in the
co-authorship network refer to co-authored relationship. Scholars study
co-author networks from various perspectives. It has been proved that
collaboration continues to influence both the practice of research and
the production of knowledge, becoming an increasing popularity among
diverse disciplines (Uddin et al., 2013). Collaboration has become more
and more common in nearly all disciplines. Besides, along with the
development in information technology, transportation, and communi-
cation, scientists are no longer required to be physically co-located, and
scientific collaboration may be conducted crossing university bound-
aries (Jones et al., 2008), even country boundaries (Wilsdon et al.,
2011). Scholars study collaboration behaviors according to co-author
networks. Furthermore, collaboration teamwork has been found to be a
new research pattern.

Co-citation Networks. Co-citation is defined as two publications
which are cited together in one article. Co-citation networks are con-
structed based on articles’ citation relationships. Apparently, co-citation
networks are directed networks since the two papers cannot cite each
other at the same time. Scholars generate co-citation networks from
publications and study scholars’ behaviors from co-citation networks.
Bai et al. (2016) studied co-citation networks and identified anoma-
lous citation relationships. Actually, some academic social relationships
may be not discovered through co-author networks, but can be discov-
ered by co-citation networks. Co-citation analysis is one of the most
commonly used bibliometric analysis methods. When two publications
are frequently co-cited by the other articles, it is possible that the two

references have something in common. As an advanced bibliographic
technique, co-citation analysis is commonly used to discover the clus-
ters of co-citation pairs, which enables scholars to obtain new insights
for research trend. Although co-citation analysis has been claimed to
be superior in displaying disciplinary structures to other bibliometric
methods, it is still tough to provide a content profiling of the research
topics dealing with the literature.

Co-word Networks. Co-word analysis has developed to address this
kind of analytical problem (Leung et al., 2017). Co-word analysis is
implemented based on the co-word network, which reflects the co-word
frequency. The keyword co-occurrence frequency refers to the number
of papers in which two keywords appear at the same time. By measur-
ing the strengths of the keyword co-occurrence links, the co-word anal-
ysis reveals and visualizes the interactions between keywords. Since
keywords are the terms used to verbalize the core of a research arti-
cle, the co-word analysis is often used to explore the concept network
of research topics and trends in a specific discipline. However, the co-
word analysis also has its weakness instability due to term changes over
time.

3.2. Heterogeneous academic social networks

Heterogeneous ASNs refer to the network whose nodes represent
different entities. Fig. 4 shows an example of the heterogeneous net-
work. In Fig. 4, nodes represent institutions, authors, publications, and
venues, respectively. All of these entities are nodes within one network,
which construct this heterogeneous network. Heterogeneous ASNs are
widely used to analyze complex social connections between different
academic entities. In most current research on network science, social
and information networks are usually assumed to be homogeneous,
where nodes are objects of the same entity type (e.g., scholar) and the
links are relationships of the same relation type (e.g., co-authorship).
Interesting results have been generated from such studies with numer-
ous influential applications like community detection methods. How-
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Fig. 4. An example of the heterogeneous network.

ever, most ASNs are heterogeneous, where nodes and relations are of
different> types.

Paper-author Networks. Paper-author networks are constructed
in order to analyze the relationships between papers and scholars
(Sun and Han, 2013). Many paper-author networks are constructed
in order to recommend proper papers for target scholars. Generally,
scholars extract information from the bibliographic database and con-
struct paper-author networks. These networks contain heterogeneous
information, including articles, authors, co-citations, etc. By analyzing
paper-author networks, both explicit and implicit citation relationships
can be explored.

Bibliographic Coupling Networks. Bibliographic coupling is a
widely applied approach, which is used for grouping technical and sci-
entific papers. When two articles cite one same reference, it is defined
as a basic unit of coupling between two papers. The coupling strength
between two articles is measured based on the number of coupling
units, which means that when two articles cite the same references,
these two articles are related to some extent. The strength of this asso-
ciation is determined by the frequency of coupling. Studies on citation
network are mainly focusing on citation of academic bibliographies. In
order to explore the development and changes in the field of informa-
tion science, Huang et al. (2003) measured the association between cita-
tions according to bibliographic coupling and then cluster these cita-
tions. Börner et al. (2003) made efforts in the same area by exploring
the development and trends through co-citation analysis. Scholars can
use the co-citation relationships to group cited literatures into clusters
to study the bibliographic citations and the relationship among these
clusters.

Hybrid Networks. Hybrid approaches are widely used in identify-
ing research topics. Liu et al. (2010) presented a framework of hybrid
clustering in order to combine lexical and citation data for journal anal-
ysis. Zitt et al. (2011) examined the convergence of two thematic map-
ping approaches, i.e., citation-based and word-based. Boyack and Kla-
vans (2010) examined several types of scholarly networks, including a
co-citation network, a bibliographic coupling network, and a citation
network, which aimed at selecting the network that can best represent
the research trend in biomedicine. Janssens et al. (2009) proposed a
novel hybrid approach that integrates two types of information, which
are citation (in the form of a term-by-document matrix) and text (in the
form of a cited-references-by-document matrix), respectively.

4. Academic social networks analysis

The model for ASNs is used to represent the network, while metrics
are mainly used to analyze them. In this section, we sort out some of

the network metrics and popular metrics used in SNs analysis triggered
by ASNs. In addition, using the common properties of social networks
also helps us to understand more about academic social networks.

4.1. Social network metrics

In this part, we briefly hackle some general social network met-
rics. These metrics give us insights into the network structure without
having to know its graphical representation. Exploring the structure of
these networks aims to understand the behaviors of social systems that
generate these academic networks, which is often the ultimate goal of
such analysis.

4.1.1. Global metrics
There are many metrics to explore entire networks’ attributes.
Diameter. In the network, the distance dij between node i and node

j denotes the number of edges that connect the shortest path between
these two nodes. The diameter D refers to the maximum eccentricity of
the network, which describes the maximum distance (Yan et al., 2010).
It is expressed by Eq. (1):

D = max
i,j

dij (1)

Density. The density refers to measuring the connectivity of a global
network, which is calculated by dividing the total number of connec-
tions present by the total number of possible connections with the same
number of nodes, as defined by Eq. (2):

𝜌 = E
Emax

(2)

where E is the number of the network’s edges and Emax refers to the
number of possible edges with the same nodes. Emax is n(n − 1) for
directed networks and n(n − 1)∕2 for undirected networks.

Average Shortest Path Length. The average shortest path length L
of the network is the mean length of the shortest path between any two
nodes (Yan et al., 2010) and is expressed as Eq. (3):

L = 2
N(N − 1)

∑
i≠j

dij (3)

Harmonic Average Shortest Path Length. When a network has
multiple connected components, the previous formula does not hold
since the metric is usually defined as infinity when there is no path
connecting two nodes. In this case, we can use harmonic average short-
est path length, as shown in Eq. (4), which counteracts their influence
on the sum as soon as it turns an infinite distance into zero:

L−1 = 2
N(N − 1)

∑
i≠j

1
dij

(4)

Average Degree. The average degree ⟨k⟩ of the network is the aver-
age of the degrees ki for all nodes, as shown in Eq. (5):

⟨k⟩ = ∑
i𝜖V

ki
N

(5)

It is used to reflect the global connectivity of networks.

4.1.2. Community metrics
There are many methods for researchers to identify the communities

in the network. Here we present the two most classic metrics.
Core. The metric of core can identify the groups which are closely

interconnected in the whole network. K-Core is the largest entity group
and its all nodes are connected to at least the other k nodes in this
group. K-Core helps identify smaller interconnected core areas. The
linked nodes are independent of the other nodes that they may con-
nect to outside the group. The value of k is sometimes called the core of
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Fig. 5. An example of closed and open triplets.

a group. For example, if all nodes are associated with at least two other
nodes in the group, this group is a 2-Core group.

Clique. The metric of clique is defined as the largest set of nodes
that all nodes are directly adjacent to others. In ASNs, we can know
that a clique is a group of authors, all of whom write papers with all
the other authors. Thus, the largest cliques will be identified as those
who write special articles with many co-authors.

4.1.3. Node degree
The degree of a node is defined as the number of its neighboring

nodes and the formula is shown in Eq. (6):

ki =
∑
i𝜖V

aij (6)

4.1.4. Clustering coefficient
A cluster means that the collaboration exists between any two schol-

ars and the construction of a toy triplet is shown in Fig. 5. Thus, if node
A is connected to node B and node B is connected to node C, the prob-
ability that node A will also be connected to node C is increased. The
clustering coefficient is divided into local values and global values.

Local Clustering Coefficient. The local clustering coefficient indi-
cates the level of cohesion in the neighborhood of a node. A commonly
used method for calculating local clustering coefficients is shown in Eq.
(7):

Ci =
2Ei

ki(ki − 1) (7)

where Ei represents the number of edges for node i.
Global Clustering Coefficient. The global clustering coefficient

measures the clusters of the whole network and can be used in both
directed and undirected networks, but not in weighted networks. The
formula is shown in Eq. (8):

C =
∑

iCi
n

(8)

4.1.5. Centrality
Degree, closeness, betweenness and eigenvector centrality are basic

approaches for calculating nodes’ centrality (Wasserman and Faust,
1994). A toy model is shown in Fig. 6, where the most important nodes
are marked according to these centralities. The metric of PageRank is
transplanted from the Web page rankings. We will describe these five
different metrics in detail.

Degree Centrality. It is the simplest of all centralities, which is
calculated corresponding to the number of neighbors of a node. It rep-
resents the interconnectedness of network nodes, reflecting the nodes’
communication activities. It is often calculated by dividing the degree
of a node by n - 1, limiting the value in the range of [0, 1]. It is calcu-
lated by Eq. (9):

CD(i) =
ki

N − 1
(9)

Closeness Centrality. It is used to measure the average length of
the shortest path from one node to all other nodes, presented as Eq.
(10):

CC(i) =
N − 1∑N

j≠i dij
(10)

Fig. 6. An example of the co-authorship network.

It is generally used in the largest component of the network and con-
siders all the other nodes in connected networks. In ASNs, closeness
centrality is an indicator of reachability that reflects the time from one
node to another.

Betweenness Centrality. Betweenness centrality is used to describe
the extent of nodes that must be gone through in order to reach other
nodes. In ASNs, nodes with high betweenness centrality play a key role
because they act as a bridge between scholars and control the flow of
information in the network to some extent. It is expressed as Eq. (11):

CB(i) =
∑

s≠i≠t𝜖V,s<t

𝜎st(i)
𝜎st

(11)

where 𝜎st(i) represents the number of shortest paths between nodes s
and t through node i, and 𝜎st is the number of shortest paths between
nodes s and t.

Eigenvector Centrality. Eigenvector centrality is another measure
of reflecting the node’s importance. It gives the relative scores of all the
nodes according to the principle that the nodes connected to the high
scores contribute more to the scores of the nodes rather than the ones
of the low scores. It is calculated by using the adjacency matrix in Eq.
(12):

CE(i) =
1
𝜆

∑
j

AijCE(j) (12)

where Aij denotes ith eigenvector of the adjacency matrix in the net-
work.

PageRank. PageRank was originally used for Google’s web pages
core ranking mechanism (Page et al., 1999; Brin and Page, 2012). It
finds important nodes by calculating the weight of the nodes that use
out-degree links, which means that other nodes linked by these nodes
also have higher page rankings. PageRank is calculated by Eq. (13):

PR(r) = 1 − 𝜆

N
+ 𝜆

k∑
i=1

PR(ri)
Kout(ri)

(13)

where N represents the total number of nodes in the network, Kout is
the out-degree of the node r, ri denotes the in-degree of node r and 𝜆 is
the damping factor.

4.2. Properties

For ASNs, there are some common properties of these networks.

4.2.1. Power-law degree distribution
Degree distribution refers to the probability distribution of nodes

degree in the whole network, which is denoted by P(k). In random net-
works, degree distribution is highly homogeneous since the existence
of each edge is equiprobable. Unlike random networks, Barabási and
Albert (1999) found that the degree distribution of nodes in the real
network is heterogeneous, such as citation networks, in which most

92



X. Kong et al. Journal of Network and Computer Applications 132 (2019) 86–103

Table 3
Basic information of major academic social network analysis tools.

Tool Platform Language Access Description

CiteSpace Windows/iOS/Linux Java Free Analyzing and visualizing the patterns and trends of scholarly publications.
CitNetExplorer Windows/Others Java Free Specifically analyzing and visualizing citation networks.
Gephi Windows/iOS/Linux Java Free An open source network tool for analysis and visualization.
HistCite Windows java Free Literature analysis and information visualization.
iGraph Windows/iOS/Linux C/R/Python Free A network analysis and visualization tool.
NetworkX Windows/iOS Python Free A highly portable tool for large real-world networks.
NodeXL Windows C#/.NET Free A network analysis package for Microsoft Excel.
Pajek Windows/iOS/Linux C/R Free A large, complex network analysis tool.
Sci2 Windows/iOS/Linux Built on CIShell Free Used for scientific research, supporting temporal, geospatial, subject and

network analysis.
UCINet Windows/iOS Java Purchase Analyzing social networks.
VOSviewer Windows/Others Java Free Analyzing and visualizing bibliographic networks.

nodes have lower degrees and very few nodes have higher degrees.
They pointed out that the degree distribution of real networks follows
a power law distribution approximately. Sometimes, we call these net-
works as the scale-free networks (Barabási and Bonabeau, 2003). Fur-
thermore, they groundbreakingly designed a network growth model
called the Barabási-Albert model, which is the process we know about
preferential attachment.

4.2.2. Small-world property
Travers and Milgram (1977) pointed out the small-world properties

of the real social networks through the well-known Milgram experiment
and explained the concept of the “Six Degrees of Separation” explicitly.
It has now been proven that the small-world properties are universal in
real worlds. In SNs, the small-world property signifies that the average
shortest path length between nodes is proportional to a fixed average
network size (Newman, 2003b). In ASNs, this property shows that two
uncooperative researchers can be contacted through a series of their
collaborators.

4.2.3. Mixing patterns
There are different types of nodes in many networks. In these net-

works, node-to-node links tend to be selective and highly correlated
with the type of nodes (e.g., papers, authors and venues). The real net-
works tend to show a higher tendency to mix. Newman (2003a) pro-
posed a metric called assortative coefficient to measure the extent of
confusion in a network.

4.2.4. Community structure
Due to the heterogeneity of edge distribution in the network, the

property of the community structure is generated. The community can
be defined as a similar group of the nodes(Newman and Girvan, 2004).
Therefore, we usually find a high density of edges in certain areas of
a network and lower density of edges between those areas. Most real
networks exhibit the characteristics of community structures. In ASNs,
we can classify scholars into communities according to their similarities
and analyze the relationship between communities.

4.3. Academic social network analysis tools

Due to the large volume of SBD and various types of ASNs, man-
ual processing takes too much time and effort. We can use analysis
tools to build, analyze, and visualize ASNs by using network features.
The functions of ASNs analysis tools are versatile, for example, network
characterization, relational mining, community detection, and visual-
ization. Now, there are plenty of tools, for example, CiteSpace (Chen,
2004), CitNetExplorer (Van Eck and Waltman, 2014), Gephi (Bastian et
al., 2009), HistCite (Garfield and Pudovkin, 2004), iGraph (Csardi and
Nepusz, 2006), NetworkX (Hagberg et al., 2008), NodeXL (Smith et al.,
2009), Pajek (Batagelj and Mrvar, 2004), Sci2 (Team, 2009), UCINet

(Borgatti et al., 2002), VOSviewer (Van Eck and Waltman, 2011). Here,
we briefly describe the information about these tools in Table 3.

5. Key mining technologies

Academic social network mining is an important sub-task of aca-
demic social network analysis. It aims to mine academic social rela-
tions, which can be regarded as the association between entities. Recent
trends have focused on mining interrelationships with the advent of
both available data and developing technologies. From data mining and
SNs mining perspectives, we classify measures of ASNs mining into the
following four categories:

• Similarity measure
• Statistical relational learning
• Graph mining
• Machine learning

These techniques usually work on the relation extraction in social net-
works and could be implemented in academic social networks depend-
ing on the network affiliation. More specifically, they can easily be
implemented in community detection, relation mining, and link pre-
diction. Fig. 7 provides the main classification and their applications in
academic social networks of these methods.

5.1. Similarity measures

Similarity measures are used to measure the extent of similarity
between entities in networks. The concerns over current similarity mod-
els in multi-relational social networks fall into two areas: content-based
algorithms and linkage-based and structural algorithms.

5.1.1. Linkage-based and structural methods
Most existing studies on network mining are based on classical algo-

rithms, PageRank (Page et al., 1999) and SimRank (Jeh and Widom,
2002), which use random walk techniques in the ranking process. The
aim of the random walk approach is to estimate the probability of pass-
ing each node. Therefore, a well-connected structure will have a higher
PageRank score in networks. These algorithms and their applications
are widely used in collaboration patterns mining and recommendation
(Strohman et al., 2007; Lü and Zhou, 2011; Li et al., 2014), rising star
finding (Daud et al., 2013; Li et al., 2009; Zhang et al., 2016), and sci-
entific evaluation (Chen et al., 2007; Zhou et al., 2012; Wang et al.,
2013b) in ASNs.

5.1.2. Content-based methods
In the case of content-based analysis, the most well-known meth-

ods are distance-based algorithms, cosine-based algorithms, correlation-
based algorithms, and Jaccard coefficient. Minkowski distance, Cheby-
shev distance, Manhattan distance, and Euclidean distance are widely

93



X. Kong et al. Journal of Network and Computer Applications 132 (2019) 86–103

Fig. 7. Key mining technologies for ASNs mining.

used to calculate distance similarities and cluster entities with common
characteristics into various groups. These methods have emerged as an
appealing way to use information about an item itself and make sug-
gestions in the scholarly recommendation as well as analysis (Ding et
al., 2014).

5.2. Statistical relational learning

Travers and Milgram (1977) have laid the foundation for extensive
analysis of structural properties in large-scale networks. Statistical prop-
erties show differently in various typical social networks. By exploring
characteristics of these networks on a large scale, we can deeply study
the examination of connectivity behavior among nodes and how the
structure varies with the evolution of the network.

Statistical relational learning combines theories of statistical meth-
ods with data representation. It concentrates on the joint probability
distribution of the data. Studies on statistical relational learning at this
stage mainly focus on the challenges posed by learning probabilistic
models in relational data. In particular, researchers have proposed three
features including concentrated linkage, degree disparity, and relational
autocorrelation, to build up models for statistical relational learning.
Concentrated linage can represent significant inconsistencies in connec-
tivity across different types of objects. Degree disparity is produced by
the different degree of different types of objects. Relational autocorre-
lation is the relevant value of the same attribute in different affiliates.

Founded on above mentioned features, typical models include Prob-
abilistic Relational Models (PRM) (Koller, 1999), Relational Markov
Networks (RMN) (Taskar et al., 2007), Structural Logic Regression
(SLR) (Popescul and Ungar, 2003), Relational Dependency Networks
(RDM) (Neville and Jensen, 2007), and Markov Logic Networks (MLN)
(Richardson and Domingos, 2006). These statistical learning models are
established for relational data, which can be very useful for describing
the network and accomplishing analytical tasks.

5.3. Graph mining

Graph mining, which is an important aspect of network mining, has
become increasingly attractive recently. It refers to the process of using
graph models to discover useful knowledge and information from mas-

sive data. In ASNs, it can be applied to various aspects, such as link
analysis, group detection, metadata mining.

Frequent subgraph mining is an active research topic in graph
mining. Related methods include Apriori-based algorithms (i.e., AGM
(Abramowitz et al., 1966), ACGM, path-join (Li et al., 2001). etc.) and
FP-growth algorithms (i.e., gSpan (Yan and Han, 2002), CloseGraph
(Yan and Han, 2003), FFSM (Huan et al., 2003). etc.). They gradu-
ally expand their frequency to get frequent subgraphs with slightly
different extensions of edges. Furthermore, Wang et al. (2005) pro-
posed an index-based frequent subgraph mining algorithm GraphMiner
for mining frequent patterns from large disk-based graph databases.
For dynamic graph mining, Borgwardt et al. (2006) designed Dynam-
icGREW for extant pattern mining on static graphs for time series of
graphs. Other graph mining algorithms involve significant subgraph
mining (Sugiyama et al., 2015) and dense subgraph mining (Gunne-
mann et al., 2010).

These algorithms are usually used to extract and analyze relation-
ships among entities in ASNs, for example, community mining, scien-
tific patterns unveiling (He et al., 2012), and impact prediction (Pobied-
ina and Ichise, 2014) in detail.

5.4. Machine learning

The major tasks involved in machine learning approaches of aca-
demic social network mining are supervised techniques and unsuper-
vised measurements. In the supervised domain, the relation task aims
to extract a set of known relations based on mentions of the entity pair.
It requires a large amount of training data for learning. On the con-
trary, unsupervised tasks focus on predicting which relationship class
of a given entity is beyond the given labels. Deep learning is also an
important branch of machine learning. Thus, we classify the key mining
techniques into the following categories: supervised learning, unsuper-
vised learning, and deep learning.

5.4.1. Supervised learning
Traditional supervised learning methods can be divided into two

categories: feature-based and kernel-based methods. Based on related
theories, mining tasks in ASNs are generally identified as a classification
problem. There are too many classification models for supervised learn-
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ing, i.e., Decision Tree, Neural Networks, Support Vector Machines,
and K-Nearest Neighbors. Regression models (Herlocker et al., 1999)
can also be used for relational classification. The performance of these
methods relies on feature selection and parameter settings. For exam-
ple, Akritidis and Bozanis (2013) solved the problem of the automatic
paper classification by introducing machine learning algorithms. They
associated authors, co-authors, keywords and published journals with
many labels of the taxonomy. XGboost (Chen and Guestrin, 2016) is a
machine learning model proposed in recent years. Its prediction abil-
ity is better than that of support vector machine and neural network
in some respects. Its disadvantage is that it needs a lot of adjustment
parameters. Bai et al. (2017b) used the XGboost model to synthesize the
features of individual ability, institutional location and national GDP to
predict the impact of institutions.

5.4.2. Unsupervised learning
In practical applications, the process of supervised learning often

requires accurate labels, which will take huge time and effort to gen-
erate datasets. Learning without labeling a dataset is called unsuper-
vised learning, which is often considered as a clustering problem in
the relation extraction. A number of techniques have been developed
to identify similar entities. Up to now, there are five general clustering
algorithms, including hierarchical methods, partition-based methods,
density-based methods, grid-based methods, and model-based meth-
ods, in which the most commonly used are hierarchical methods and
partition-based methods (Han et al., 2011). Partition-based algorithms
divide the dataset into k parts by optimizing the evaluation function,
which needs researchers to decide the value of k as input. Typical algo-
rithms in partition-based methods are K-means, K-medoids (Park and
Jun, 2009), and CLARANS (Ng and Han, 2002).

Hierarchical methods consist of different levels of segmentation
clustering and the segmentation between levels have a nested rela-
tionship. It does not require input parameters, which is one of the
obvious advantages compared with Partition-based methods. However,
researchers need to specify the termination condition. Typical hierar-
chical algorithms include BIRCH (Zhang et al., 1996), DBSCAN (Birant
and Kut, 2007) and CURE (Guha et al., 1998).

Although the performance of unsupervised learning is less effective
than supervised learning, it can pick representative samples out of the
large dataset for classifier training, and help in classification in terms
of dividing samples into different categories which can be labeled by
manual annotation.

5.4.3. Deep learning
Deep learning is one of the most important machine learning meth-

ods based on data representation. Same as machine learning methods, it
also consists of supervised learning and unsupervised learning. Typical
algorithm under supervised learning is Convolutional Neural Networks
(CNN) (Krizhevsky et al., 2012). Unsupervised deep learning is mainly
divided into two categories. One is based on the autoencoder (Rifai et
al., 2011), of which the main goal is to restore the original data from
the abstract data in one piece. Others are on the basis of Boltzmann
machines (Aarts and Korst, 1988). The main goal of these algorithms is
to reproduce the original data when the machine reaches a steady state.

6. Applications

ASNs have extensive applications in the related research of aca-
demic interaction and communication. We do not focus on the algo-
rithm, but emphasize some of the existing new ideas and meth-
ods. In this paper, we briefly present these applications from three
aspects: actor-oriented applications, relationship-oriented applications,
network-oriented applications, as shown in Fig. 8. Finally, we summa-
rize some helpful ASNs sites.

Fig. 8. Applications of academic social networks.

6.1. Actor-oriented applications

Actor-oriented applications include many aspects and we elaborate
on them from the author, paper, and journal three aspects.

6.1.1. Author-level tasks
The author is an important entity in ASNs and the relationships of

authors are complex. We review some of the popular studies in recent
years.

Author Name Disambiguation. Author name disambiguation is
still a difficult problem in literature retrieval and data processing (Tang
and Walsh, 2010). A single name may signify several distinct authors,
and an individual author may have multiple names searched. Some
studies have shown that author name ambiguity may result in strongly
bias for network attributes like the clustering coefficient (Kim and Dies-
ner, 2016). When we extract author information, we need to pre-process
to eliminate the inherent ambiguity which is associated with authors’
names. Basically, there are three ways to eliminate ambiguous names:
algorithm-based, first-initial, and all-initial methods (Khan et al., 2016).
Treeratpituk and Giles (2009) used the Random Forest Model to disam-
biguate names by considering the author’s name, affiliation, collabora-
tor, and related factors. Based on the hypothesis that one author can
be identified by his co-authors, Kang et al. (2009) proposed a way to
eliminate ambiguity by implicit co-authors of target authors. In addi-
tion, Kim et al. (2014) used the three above-mentioned methods for the
DBLP dataset to eliminate ambiguity and they found that author name
disambiguation have a significant effect on analyzing data effectively.
Cota et al. (2010) proposed a method of disambiguating names based on
the similarity of citation information (e.g., titles) in the co-authorship
network.

Author Ranking. The methods of author ranking based on network
link structure can be divided into two categories: iterative method and
non-iterative method. Firstly, the iterative method executes instructions
iteratively until the algorithm converges. PageRank (Brin and Page,
2012; Page et al., 1999) and HITS (Kleinberg, 1999) algorithms are
two basic iterative algorithms, and a lot of author ranking methods are
based on these two algorithmic ideas. Fiala et al. (2008) used the modi-
fied PageRank to achieve scholar rankings in the bibliographic network.
Ding et al. (2009); Yan and Ding (2011) considered the weight of edges
in the network and proposed a weighted PageRank method for study-
ing citation networks and co-authorship networks. Li and Tang (2008)
considered time statistics and combined social networks with the ran-
dom walk model. Radicchi et al. (2009) proposed a weighted PageRank
approach by considering the credit diffusion of authors. Ding (2011)
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introduced the topic weights to present a topic-sensitive extension of
the PageRank algorithm. Amjad et al. (2015) used a topic-based model
in heterogeneous academic networks. In addition, researchers continue
to enrich the author ranking methods by considering topological fea-
tures. It is generally believed that if a scholar is situated at a certain
key position in ASNs, he/she can be recognized to be important. Chi-
ang et al. (2013) used social relationships and local information to find
the top-k authors in the co-authorship network based on the probabilis-
tic model of the random walk.

Expert Finding. The information retrieval subject has received
more and more attention, and the search for professionals in a par-
ticular field is called Expert Finding (Serdyukov, 2009). Expert Finding
is a concept that focuses on the organization and is targeted at identi-
fying people with relevant expertise or rich experience. Basically, there
are two kinds of methods: content-based method (Chen et al., 2013),
which focuses on assessing a scholar’s expertise by measuring the cor-
relation between the related documents and the query, and SNs-based
method (Kardan et al., 2012), which is more concerned with scholars’
social interaction in ASNs, such as co-authorships and citation relation-
ships. We highlight the latter method that is relevant to the subject of
our article. Noll et al. (2009) proposed a HIT-based approach that links
users and documents by assigning different weights. To integrate het-
erogeneous information, Nie et al. (2005) proposed the PopRank model,
which showed that the author’s score comes from the combined score
of different types of objects. Sun et al. (2009) introduced a ranking-
based clustering method in the heterogeneous network, which targets
clustering and sorting objects in the clusters simultaneously. Deng et al.
(2012) proposed a joint regularization framework that enhances expert
finding by modeling heterogeneous networks as document-centric mod-
els of regularization constraints. Yang et al. (2013) provided schol-
ars with information on individual social networks, research relevance,
and organizational connectivity for expert recommending, in order to
expand the scope of research as well as improve the specificity of the
recommendation.

Rising Star Finding. Rising stars are scholars with specialized
knowledge and abilities, and may gain a high reputation in their related
fields in the near future (Daud et al., 2013). Searching for a rising
star in a particular field is a new research direction in recent years
which may make it possible for research teams to emphasize valuable
and potential researchers. This idea was originally calculated by Pub-
Rank (Li et al., 2009) which only contains the static ranking of venues
and the interacted influence between author and papers. The StarRank
(Daud et al., 2013) method enhances the reliability of the PubRank
method by considering the dynamic publication ranking. Later, Daud
et al. (2015) proposed a machine learning method based on a com-
bination of publications, co-authors, and venues to find rising stars.
Wijegunawardana et al. (2016) found the rising star from multiple
data sources using a combination of multi-target methods and rank-
aggregation methods. Panagopoulos et al. (2017) proposed a method
based on unsupervised clustering machine learning that considers all
key performance indicators (KPIs) to identify rising stars. In addition,
Zhang et al. (2016) proposed the CocaRank method by integrating the
newly defined indicators called collaboration caliber, citation counts,
and hybrid results, to find rising stars in ASNs. Their method can
find more top rising stars with the higher average number of cita-
tions.

6.1.2. Paper-level tasks
For the applications of the paper, scholars are interested in the paper

impact evaluation and prediction. The paper impact is significant to
assess the effect of scholars, journals, institutions and even countries
(Bai et al., 2017a). It is also vital for the assistance of rewards, promo-
tions, and recruitment. Therefore, the research on evaluating and pre-
dicting paper impact has not slowed down during the past few decades.

Paper Impact Evaluation. Traditionally, the number of papers’
citations (Lehmann et al., 2006), impact factor (Timilsina et al., 2016)

and h-index (Hirsch, 2005) are widely used to measure scientific impact
of individual papers. Most of these studies assess paper impact based
on the PageRank algorithm and the HITS algorithm (Chen et al., 2007;
Zhou et al., 2012; Wang et al., 2013b). For example, Ding et al. (2009)
firstly applied the PageRank algorithm on the Co-citation network to
rank paper impact. Network-based ranking methods sprung up to evalu-
ate the impact of the paper in recent years. Zhou et al. (2012) proposed
the MutualRank algorithm to evaluate the impact by jointly ranking
papers, authors, and venue information. Wang et al. (2013b) proposed
the CAJTRank approach by mining authors, references, periodicals, and
time information. In order to further improve the validity of the assess-
ment, Yao et al. (2014) proposed a non-linear PageRank method in
which the high citing articles are favored and the low-citing articles are
penalized.

Paper Impact Prediction. Paper Impact Prediction is as important
as Paper Impact Evaluation. Much work has already been done to pre-
dict the number of future academic citations. Yan et al. (2011) studied
a series of important features for future citations. Wang et al. (2013a);
Shen et al. (2014) revealed the fundamental mechanisms that dominate
scientific impact, which can further quantify and predict the number of
future citations. However, citation distributions can seriously affect the
validity of predictions. Sayyadi and Getoor (2009) proposed the Futur-
eRank method to predict the future impact of papers, by considering the
author’s relationship, citation and publication information comprehen-
sively. Yao et al. (2014) proposed a MRFRank algorithm to predict the
future impact of the papers based on the co-authorship network, the
weighted time-aware citation network as well as the textual features.
In addition, early citations of papers have a significant impact for pre-
dicting the long-term citations (Bruns and Stern, 2016). To avoid over-
reliance on historical citation data, social media activities are used to
reflect the potential impact of papers. Eysenbach (2011) used Tweets to
predict whether a paper can be cited frequently during the first 30 days
after publication. Timilsina et al. (2016) predicted the paper impact
by combining bibliometric data with social media data, demonstrat-
ing that graph-based approaches can effectively predict the scholarly
impact.

6.1.3. Journal-level tasks
Compared to the previous two tasks, there are few studies on the

journal-level tasks. The researches of journal-level tasks mainly focus
on the journal impact evaluation.

Journal Impact Evaluation. High-quality journals tend to guide
research and development in a particular field. However, there are a
large number of journals, and it is important to evaluate journals rea-
sonably. There are many metrics for evaluating journal impact, such
as the Thomson Reuters Influential Factors (IF) (Stegmann, 1997),
the Eigenfactor (Ei) (Bergstrom et al., 2008), SCImago Journal Rank
(Jamali et al., 2014) and Source Normalized Impact per Paper (SNIP)
(Waltman et al., 2013).

At present, there are many studies that integrate multiple metrics to
evaluate journals. Su et al. (2013) used the distance measures to inte-
grate multiple indicators in a multidimensional space. Bartolucci et al.
(2015) proposed a kind of latent class model to cluster and rank jour-
nals. Yu et al. (2017) proposed a mutually reinforced journal ranking
model (MLMRJR) for ranking journals by considering the multiple links
among authors, papers, and journals. Su et al. (2017) used the ordered
weighted averaging (OWA) operators to integrate the multiple journal
impact metrics and proposed the fuzzy clustering method based on lin-
guistic terms to rank journals. Beliakov and James (2011) predicted the
ranking of journals based on a citation network using a Choquet integral
classifier to integrate different indicators.

6.2. Relationship-oriented applications

The applications of relationship are divided into author relationship
prediction, academic recommendation, and community detection.
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6.2.1. Author relationship prediction
In ASNs, the excavation of deeper scholar relationships can help

the scholars to establish potential co-authorship or citation relation-
ships. At present, the methods of identifying potential collaborations
mainly focus on machine learning, link prediction, and SNs analy-
sis.

Sun et al. (2011) analyzed co-authorship and citation relation-
ships in heterogeneous networks of DBLP to predict co-authorship.
Yang et al. (2012) proposed a MRIP method, which improved the pre-
diction accuracy of collaboration by considering the mutual flow of
information between two authors. Zhang and Yu (2014) presented a
supervised machine learning method to predict collaborations in the
field of biomedicine by using author’s network features and seman-
tic features. Chen and Fang (2014) established a latent collaboration
index model to predict the collaboration probability between patent
assignees by combining network metrics (e.g., degree and distance)
with complementary metrics (e.g., assignees types and topic similar-
ities). Guns and Rousseau (2014) combined machine learning tech-
nologies with link prediction to predict highly potential collabora-
tors. Wang et al. (2010) mined advisor-advisee relationships in the
collaboration network by constructing the time-constrained probabil-
ity factor graph model. On this basis, Wang et al. (2017a) further
explored advisor-advisee relationships by additionally considering the
local properties like academic age and the number of co-authored
papers.

6.2.2. Academic recommendation
In the era of big data and information explosion, it is not the most

effective way to retrieve relevant results through manual searches and
browsers. Various academic recommendation systems have been intro-
duced to mitigate the information overload problem to filter large
amounts of data.

Collaboration Recommendation. In the academic field, collabo-
ration is beneficial to the productivity of researchers (Abramo et al.,
2009). Therefore, recommending collaborators to researchers is an
urgent problem to be solved. The methods of collaboration recom-
mendation can generally be divided into four categories (Kong et al.,
2017), that is, content-based recommendation, collaborative filtering-
based recommendation (Pham et al., 2011), social network-based rec-
ommendation (Li et al., 2014) and hybrid-based recommendation (Kong
et al., 2017).

Sugiyama and Kan (2010) introduced a generic model to recom-
mend scholarly papers related to researchers’ interest. Katz and Mar-
tin (1997) considered the different levels of collaboration and dis-
cover that researchers with higher levels of collaboration tend to be
more efficient and productive. Yang et al. (2015) proposed a rec-
ommendation method in heterogeneous networks that considers the
social proximity and institutional connectivity. The recommendation
methods above are static, but researchers’ research interests some-
times change over time. Liang et al. (2012) proposed a time-aware
topic recommendation that considered the dynamics of topics. Daud
(2012) proposed a time topic modeling and found that researchers’
interests and relationships have changed over time. Kong et al. (2017)
proposed a novel BCR model that considers the distribution of inter-
est topics, temporal dynamics of interest and the level of collabora-
tors to recommend helpful collaborators. Chaiwanarom and Lursin-
sap (2015) made recommendations based on their research interest
of collaboration, seniority and evolution, and discover the interdisci-
plinary nature of the research questions. Based on the relevant rec-
ommendations, Chen et al. (2011) developed a system to recommend
potential collaborators. Link prediction is also a method for the col-
laborator recommendation (Lü and Zhou, 2011). Benchettara et al.
(2010) implemented collaborators’ recommendation through the binary
topological supervised learning method. Wang and Sukthankar (2013)
proposed a new link prediction method to avoid the uniform treat-
ment of all links. In order to predict links for heterogeneous networks,

Dong et al. (2012) proposed a factor-based ranking graph model with
better results.

Paper Recommendation. Due to the information overload of pub-
lications, the paper recommendation can effectively help researchers
find relevant papers in their particular areas. There are a vari-
ety of paper recommendation methods based on the similarities
between two papers. Since the discovery of potential papers can
be considered as the process of link prediction, it can be divided
into citation-based link prediction and content-based link predic-
tion.

Strohman et al. (2007) used commonly Katz index of link pre-
diction problems for citation recommendation. The Katz index cal-
culates the number of paths by choosing a shorter length in the
citation network. Many studies use the restarted random walk for
citation analysis (Lao and Cohen, 2010), which is an efficient tech-
nique that has similarities with the PageRank algorithm. Based on
this, Lao and Cohen (2010) proposed a learnable measure of prox-
imity using machine learning techniques to weight edges. Nassiri et
al. (2013) proposed a normalized similarity index (NSI) to calcu-
late the similarity of papers based on citations. On the other hand,
content-based link prediction considers semantic information. Meng et
al. (2013) established a network-based model to recommend papers
by considering a variety of information such as authorship, content
and collaboration networks. Huang et al. (2015) combined a novel
neurological probability model with semantic texts to recommend
papers. Kong et al. (2018) proposed a method called VOPRec which
used the node embedding technology to comprehensively consider
text information and network structure information to recommend
papers.

Venue Recommendation. It may be a dilemma for the researcher
to choose the appropriate venue to submit the paper before writing
the paper or after completing the paper. Therefore, we need a system
that can recommend possible publishing venues to help researchers. In
recent years, as researchers face more and more information overload
problems when looking for new venues, there has been a resurgence of
research and development around academic activity recommendations
(Huynh and Hoang, 2012).

Luong et al. (2012) used network analysis techniques to weight
venues in the network by the number of co-authored articles between
both authors. However, the authors only evaluated their recommen-
dations on a small scale, with the dataset covering only 16 venues
and fewer than 1000 papers. Boukhris and Ayachi (2014) proposed
a hybrid recommendation approach that used collaborators, co-citers
and researchers from common academic institutions to recommend con-
ferences. Silva et al. (2015) identified journals published by similar
researchers through analyzing researchers’ social networks, and recom-
mended journals considering the quality and similarity of manuscripts.
Yang and Davison (2012) used the ratings of the paper’s topic and writ-
ing style, while Medvet et al. (2014) used the title and the abstract
to recommend venues. In addition, Xia et al. (2013) proposed a
social-awareness conference recommendation system for recommend-
ing events. Alhoori and Furuta (2017) proposed a method for evalu-
ating venues based on user-centered altmetrics and exploring authors’
reading interests.

6.2.3. Community/group detection
In SNs, network community/group detection is significant since

community/group structure can be used to study human behav-
ior. Network community structures are closely related to graph
partitions in ASNs. There are various approaches to detect com-
munities/groups. Here, we present two main detection approaches,
i.e., modularity-based approaches and other community partitioning
approaches.

Modularity-based approaches. Modularity is first proposed by
Newman and Girvan (2004), which is a commonly used criterion for
determining the quality of network partitions. Modularity is a mea-
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sure that can be used to reflect the level or degree of how a network’s
communities may be separated and recombined. However, searching
for maximum modularity of a large-scale network is a NP-hard issue.
Thus, many fast approximate algorithms are developed, for example,
greedy-type algorithms, simulated annealing methods, extremal opti-
mization and spectral optimization algorithms. Among them, CNM is
a classical greedy-type algorithm proposed by Clauset, Newman, and
Moore with the computational complexity of O(nlog2n) (Clauset et al.,
2008). In many real large-scale academic networks, there exist hierar-
chical structures. Moreover, a large community may also contain many
smaller communities. To detect the hierarchical structure of a given
large-scale academic network, Expert et al. (2011) proposed the algo-
rithm called BGLL. BGLL supposes every node in the given network is
a community in the initialization step and then consider each node’s
neighboring nodes and compute the increment of the modularity value
of neighboring node’s community.

Modularity can be also applied in time-dependent networks, mul-
tiplex networks and multi-scale networks (Chaturvedi et al., 2012).
According to slice order, a multi-slice network can be divided into
mainly two kinds. One is the multi-slice network in which slices have
been ordered. The multi-slice community detection method can be used
to uncover some refined details over time (Mucha and Onnela, 2010).
Other multi-slice networks are that slices have no order. A multiplex
network formed 1640 college students in an American university that
had several relationships, i.e., Facebook friendships, picture friend-
ships, roommates, and housing-group preferences (Mucha and Onnela,
2010). In this generated multiplex network, each slice is constructed
based on each kind of relationship. In academia, scholars construct the
multiplex network to explore relationships between scholars’ different
disciplines. Sometimes, a multiplex network is called a multi-layer net-
work.

There also exist many real networks that are embedded into
Euclidean space, such as the Internet and various online social net-
works and transportation networks. To study the influence of spatial
node-edge distributions on network topological and dynamical proper-
ties, Barthélemy (2011) modified modularity by taking consideration
of the effect of space. In addition, the problem of information diffu-
sion (Myers et al., 2012; Haralabopoulos and Anagnostopoulos, 2014a)
in online social networks can be captured by multi-layer information
flow (Haralabopoulos and Anagnostopoulos, 2014b). Suny et al. (2018)
proposed a multiple diffusion model (MDM) that combines the multi-
labeled Hawkes process with the topic model to infer social networks’
multiple structures. They validated their model to be more effective in
revealing the structure of multiplex networks through experiments on
real datasets.

Other approaches. There are real datasets showing that some net-
works with prominent community structures cannot be recognized by
modularity, while some networks without prominent community struc-
tures are commonly recognized as having prominent community struc-
tures. Besides, the resolution of modularity makes it difficult or even
impossible to identify small size communities in large-scale academic
social networks (Fortunato and Barthelemy, 2007). Besides, the above
mentioned approaches consider that every node can be clearly clas-
sified into one community. However, communities often have overlap-
ping nodes, which may belong to more than one community. In order to
deal with this situation, Palla et al. (2005) proposed clique percolation
(CP) algorithm to recognize communities with overlap with software
CFinder. The key process in the CP algorithm is to find all k-cliques
starting to form an initial node. After finding all cliques, a clique-clique
overlapping matrix can be generated, which is similar to the adjacency
matrix.

Ahn et al. (2010) proposed an edge-based community detection
approach since many communities are connected through massive
edges where the role of nodes is not as significant. Edge-based net-
work partition approaches can be classified through proper thresholds
to reduce confusions and communities.

6.3. Network-oriented applications

The network-oriented applications study ASNs by considering rela-
tionships and characteristics of the entire network.

6.3.1. Collaboration pattern
Since the last century, collaboration has increasingly become a

mainstream scientific knowledge pattern in many fields (Wuchty et al.,
2007). Scientific collaboration is also a hot spot in ASNs (Wang et al.,
2017b).

Barabâsi et al. (2002) and Newman (2001, 2004), respectively,
made groundbreaking research contributions to exploring collaboration
networks. Subsequently, the tremendous growth of literary publications
explained the structure and evolution of academic co-authorship net-
works, especially in the properties of “scale-free” and “small world”
(Yan et al., 2010). In addition, the basic evolution mechanism of aca-
demic collaboration networks and the models of evolutionary dynam-
ics are also widely studied (Evans et al., 2011). Still, other researchers
focus on the characteristic of “social cohesion” (White and Harary,
2001) in many fields. Powell et al. (2005) confirmed the existence of
“cohesive core” attribute in the field of Life Sciences. By tracking the
evolution of the collaboration networks in the field of complex net-
work research, Lee et al. (2010) discovered three primary processes in
the evolution of networks: small isolated components, giant tree-shaped
components with powerful cores, and large-scale recycling components.
Wei et al. (2017) studied the productivity patterns and international
collaboration by classifying the network into individual, institutional
and international levels.

6.3.2. Interdisciplinary research
Interdisciplinary research is generally considered the best way to

solve complex problems in current scientific research. Smajgl and Ward
(2013) pointed out that the development of interdisciplinary research
promoted methodological innovations. Porter and Rafols (2009) evalu-
ated interdisciplinary evolution in six domains and found that the num-
ber of cited disciplines, the number of references per paper, and col-
laborators per articles changed significantly. They also discovered cita-
tions of one paper focusing mainly on adjacent subject areas. Cronin
and Sugimoto (2014) also found an upward trend in interdisciplinar-
ity after the decline between 1945 and 1975. By studying the evolu-
tion of collaboration network in interdisciplinary fields, Liu and Xia
(2015) found that the network gradually evolved from small local clus-
ters into the structure of “chained communities” and then to a small
world structure. Chang and Huang (2012) analyzed the direct cita-
tion, bibliographic coupling and the co-authorship network to study
the changes of interdisciplinary in the field of Library and Information
Science. Chen et al. (2015) studied interdisciplinary changes in Bio-
chemistry and Molecular Biology over 100 years, demonstrating that
interdisciplinarity has evolved primarily from neighboring areas to dis-
tant cognitive domains. Karunan et al. (2017) constructed an interdis-
ciplinary assessment framework to demonstrate the interdisciplinary at
the paper level.

6.3.3. Research trend prediction
The research subject is dynamic as breakthrough research can pro-

mote certain areas as well as emerging new research topics. Therefore,
it is imperative to effectively find hot topics in academia for researchers
that can help them understand the latest concepts, technologies, and
trends in their concerned fields.

Earlier, this problem was solved by manually extracting the topic
for a single feature like citation relationships and co-authorship. For
example, Katz et al. (2001) obtained some short-term and long-term
forecasts of emerging trends through co-citation analysis, which spent
a lot of time and efforts to carry out. Upham and Small (2010) used co-
citation clusters to find the first 20 emerging topics. Chen et al. (2012)

98



X. Kong et al. Journal of Network and Computer Applications 132 (2019) 86–103

combined co-citation analysis with burst detection to describe emerg-
ing topic trends and found that key clusters were often associated with
important papers which not only lead to a dramatic increase in the
number of citations but also have high betweenness centrality.

Co-citation is not the only method used to identify emerging trends.
Duvvuru et al. (2013) analyzed the co-occurring keyword network in
the academic corpus and monitored the temporal evolution of link
weights to examine research trends and emerging areas. Qian et al.
(2014) adopted the idea of community division and analyzed the k-
core of papers to reveal the basic process of the formation and devel-
opment of academic topics. However, this method is limited to data
quantity and its generality is also not enough. Salatino et al. (2017)
used the lique-based and triad-based method to measure the impact
of the dynamic development of existing topics on the creation of new
topics.

6.4. Academic social network sites

In order to help researchers establish personal profiles that enable
them to share interests and papers, a series of ASNs sites emerged. We
review some of the more popular sites.

AMiner was established based on Perl CGI programming in 2006.
Currently, this website includes more than 130 million scholars, 233
million publications and 754 million citations (Tang et al., 2008). The
current tasks of Aminer are: (1) to create semantic-based profiles of
researchers; (2) to integrate SBD from multiple resources; (3) to build
heterogeneous networks; (4) to analyze interesting patterns. At present,
a large number of ASNs studies have been conducted based on AMiner
such as extraction (Tang et al., 2010), rankings (Tang et al., 2008) and
impact analysis (Wang et al., 2010).

CiteSeerX is considered as the first academic digital library to offer
an autonomous citation index. CiteSeerX is unique compared to other
academic digital libraries and search engines, as all files are collected
from public websites. That is why users have full access to all search-
able files on this site. In addition, it automatically extracts and indexes
graphical entities like figures and tables. People can use metadata and
text extraction services (Williams et al., 2014a) for research. However,
CiteSeerX has problems with data collection and information quality
(Wu and Giles).

Microsoft Academic Search is a kind of academic search engine
that extracts metadata from published data sources to automatically
create a researcher’s profile. The profiles of researchers include litera-
ture information (list of publications, keywords, co-authors, etc.) and
bibliometric indicators (papers, citations, etc.). In addition, they are
classified according to the subject of papers. At the same time, it pro-
vides some visualizations, including publishing trends, co-authorship
information, and co-authorship paths (Osborne et al., 2013). However,
there are some problems with Microsoft Academic Search. One of them
is the problem of information duplication (Ortega and Aguillo, 2014),
which leads to difficult data preprocessing before using the data. In
addition, the process of author disambiguation can be hard to deal with
(Pitts et al., 2014). Another problem is that data is updated slowly
(once a year). The final problem lies in the fact that many of these
profiles belong to remote periods, which causes them to be inactive
profiles.

Google Scholar is an academic retrieval system that contains basic
information about publications (titles, co-author, year of publications,
etc.) and indicators (citation count, i10-index, h-index, etc.). Unlike
Microsoft Academic Search, its researcher profiles are created and
edited by researchers themselves, so the information of each researcher
is optional. But this led to the shortcomings of information standard-
ization (De Winter et al., 2014). In addition, it can update the data fre-
quently. Then, it can be freely accessed and extracted information by
creating a web parser program (Bar-Ilan, 2008). What’ s more, it is the
first bibliographic search to retrieve documents not limited to libraries
and traditional literature databases.

ResearchGate is an academic social networking site that allows
users to upload papers, participate in discussions, and follow other
researchers. It is designed to help academics establish their own pro-
files, share their publications and raise questions with their peers
(Thelwall and Kousha, 2015). In addition, it also provides users
with altmetric measures such as profile view counts and document
download counts. ResearchGate provides a comprehensive evalua-
tion index for each author based on the user’s profile details, their
contribution to the content, and their engagement in the site. Fur-
ther, the site also has a Q and A platform that allows scholars to
discuss and find answers to various topics. In the meantime, there
are many topics on the site where scholars can follow these topics
to view updated information on these topics in real time (Ovadia,
2014).

Academia.edu is a web-hosted platform for academic papers,
allowing users to create their own profiles and upload the list
of documents to Academia.edu. It has an analytic dashboard that
lets users see the impact and spread of their research in real
time (Meishar-Tal and Pieterse, 2017). In addition, it provides the
service to send emails to account holders whenever their inter-
ested researchers release new research publications that allow read-
ers to tag papers and remind anyone concerned with a particular
topic.

7. Looking ahead

Due to the accelerating growth of SBD in recent years, researchers
have realized the importance of using SNs to analyze ASNs. In order to
facilitate researchers to understand ASNs, our survey work has system-
atically reviewed emerging areas of ASNs. We review the background,
modeling methods, analysis methods, key mining techniques and popu-
lar applications in this area. Besides this, we also discuss some popular
tools and sites.

SBD brings the problems for storage, processing, information extrac-
tion, analysis of data and other issues. There are some problems in
the process of analyzing and mining ASNs. Firstly, due to the sheer
volume of data, it is challenging for researchers to mine useful and
effective information. These data also bring more cooperation oppor-
tunities for researchers. However, it is troublesome for researchers
to find potential collaborators (Brandao and Moro, 2012). Secondly,
ASNs are complex: citations in the papers form citation networks, while
co-authorships between scholars form collaboration networks. A large
number of SBD generated by different agencies and recorded by var-
ious platforms. In addition, the heterogeneity of SBD leads to differ-
ent variants of entity names (Williams et al., 2014b). Thirdly, sharing
data is also a challenge for ASNs. For example, issues related to intel-
lectual property and copyright may limit the copying and sharing of
data between different communities (Williams et al., 2014b). More-
over, the lack of data is also a problem that needs to be dealt with,
however, when the data is large, it can be recovered or complemented
by various relationships existing between the data. Many of the exist-
ing academic data platforms are designed for a certain subject, most
of which are limited to the field of Computer Science. This can cre-
ate limitations for interdisciplinary research. Further, it is still a chal-
lenge for scholars to study research impact evaluation. Although there
are many kinds of research about journals, conferences, and institu-
tional rankings, there is no universal framework or system to integrate
them.

The future research on this subject can be started from (1) build-
ing heterogeneous academic networks, (2) establishing a unified way
for academic impact assessment, (3) integrating multidisciplinary aca-
demic data resources, and (4) mining implicit indicators to explore
ASNs. Studying ASNs can promote the development of related tech-
nologies, promote the popularization of related platforms and systems,
and make policy design for institutions and governments more reason-
able.
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