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Abstract—The development requirements of shared buses
are extremely urgent to alleviate urban traffic congestions by
improving road resource utilization and to provide a neotype
transportation mode with good user experiences. The key to
shared bus implementation lies in accurately predicting travel
requirements and planning dynamic routes. However, the sparse-
ness and the high volatility of shared bus data bring a great
resistance to accurate prediction of travel requirements. Based
on the consideration of user experiences, optimization objectives
of shared bus route planning are significantly different from
traditional public transportation and shared bus route planning
is far more challenging than online car-hailing services due to the
relatively high number of passengers. In this paper, we put for-
ward a two-stage approach (SubBus), which is composed of travel
requirement prediction and dynamic routes planning, based on
various crowdsourced shared bus data to generate dynamic
routes for shared buses in the “last mile”” scene. First, we analyze
the resident travel behaviors to obtain five predictive features,
such as flow, time, week, location, and bus, and utilize them to
predict travel requirements accurately based on a machine learn-
ing model. Second, we design a dynamic programming algorithm
to generate dynamic, optimal routes with fixed destinations for
multiple operating buses utilizing prediction results based on
operating characteristics of shared buses. Extensive experiments
are performed on real crowdsourced shared subway shuttle bus
data and demonstrate that SubBus outperforms other methods
on dynamic route planning for the “last mile” scene.

Note to Practitioners—This paper is inspired by the prob-
lem of shared subway shuttle bus dynamic route planning
for the “last mile” scene, and it is also applicable to other
scenes, including commuting scenes, urban transportation hub
scenes, and destination scenes of the tourist market. Shared
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bus operation routes at such scenes are usually aimed at trips
with fixed destinations. Existing approaches to planning routes
are generally designed for traditional transportation, such as
traditional buses and taxis. In this paper, we propose a novel
two-stage dynamic route planning approach (SubBus) based on
the operation characteristics of shared subway shuttle buses.

We perform a resident travel behavior analysis to improve the
accuracy of travel requirement prediction. After that, we combine
the prediction results and station properties to gain shared bus
optimal routes. We then display how to apply SubBus to optimize
shared bus operation status based on crowdsourced shared
subway shuttle bus data generated by Panda Bus Company.
We keep a continuous collaboration with the company to optimize
the approach details and experimental effects, which demonstrate
that our approach can generate effective routes for shared
subway shuttle buses to optimize operation status on the “last
mile” issue.

Index Terms— Crowdsourced data, passenger flow prediction,
route planning, shared buses.

I. INTRODUCTION

RIVEN by the rapid development of information tech-

nologies, sharing economy has turned into a burgeoning
economic paradigm. Sharing economy realizes cooperative
consumption by simplifying sharing of services and the right to
use things, to increase resource utilization from the perspective
of resource redistribution [1], which promotes green consump-
tion and sustainable development in smart cities. The solution
to resource shortage thus ushers in an important turning point.
How to expand practical applications of sharing economy
in smart cities to ease resource shortage and to bring about
huge benefits for citizen living and economic development
has become an issue of close concern to scholars in multiple
fields [2], [3].

Ridesharing is to integrate the same trips of passengers
within a certain period, and such a period is usually short,
such as 0.5 h. Ridesharing can be regarded as the application
of sharing economy in the field of transportation and its
concrete implementation forms include shared bicycles, shared
cars, and shared buses [4]. Online car-hailing services and
car rent services are considered to belong to the application
field of shared cars. With the rapid development of ridesharing
transportation mode represented by Didi Travel and Mobike in
recent years, the travel mode of urban residents has undergone
significant changes. In the field of personal travel, the one-
stop service platform represented by Uber and Didi Travel
has increased the operational efficiency of online car-hailing
services and, meanwhile, has crossed the stage of travel
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resource integration moving toward the direction of intelligent
travel [5].

As the most important part of urban transportation, pub-
lic transportation takes on the majority of urban residents’
travel [6]. Therefore, the development status of public trans-
portation directly affects the traffic conditions of the entire
city [7]. Moreover, public transportation has the advantages
of high road utilization, environmentally friendly, and so on,
which private transportation does not own. However, from the
perspective of ridesharing, the development of public trans-
portation lags far behind personal travel. Most cities still stay
in the stage of information sharing, that is, real-time queries
of locations of buses and vehicles. The public transportation
system does not support online booking, ticket purchase, and
other services, so it cannot meet passengers’ demand for
direct travel to destinations just relying on the existing lines.
The public transportation system cannot deploy transportation
resources according to the real-time situation, so it is difficult
to further increase resource utilization and the cost remains
high. The poor travel experience of public transportation
makes passengers incline to personal transportation. As men-
tioned in Harvard Business Review, commercial competitions
in the Internet era make the market more sensitive to ser-
vice quality than prices. What is more, Chinese President
Jinping Xi also emphasized in the report of the 19th National
Compress that the major social contradictions in China have
been transformed into the contradiction between the people’s
ever-growing needs for a better life and unbalanced uneven
development. People are increasingly demanding high quality
of life. A convenient and quick public transportation mode
with a good user experience is urgent.

Under such pressing social needs, shared bus is at the
historic moment. Shared bus is committed to developing a
transportation mode to make up the gap among current online
car-hailing services, taxis, and traditional public transportation,
providing a convenient and inexpensive door-to-door travel
experience. Shared bus integrates the same fragmented trips in
multiple scenarios and dynamically allocates the transportation
resources to provide bus services. Its operational scenarios
embrace commuting scene, airport or railway station and other
urban transport hub subscenes, destination scene of the tourist
market, and the “last mile” issue. By integrating fragmented
trips, the shared bus can improve resource utilization effec-
tively and reduce the operating costs of public transportation to
promote the long-term development of public transportation in
smart cities. Compared with traditional transportation modes,
shared bus has the following characteristics.

1) Inexpensiveness: The fare for shared bus is much lower
than that for taxis and online car-hailing services and
slightly higher than buses and subways.

2) Convenience: Shared bus is a kind of short-distance
dynamic shuttle based on human travel needs, enabling
users to take the bus such as taking a taxi.

3) High Resource Utilization: In addition to the efficient
use of vehicle resources, shared bus can also effectively
save road resources, which is quite important under cur-
rent unprecedented tension in per capita road resources
in large cities.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 15, NO. 4, OCTOBER 2018

Public Transportation Private Transportation

Urban transportation market analysis

Destination scenes of l

the tourist market Commuting Scenes
Operation scene selection

!

Travel requirement prediction

|

Bus dynamic allocation

|

Dynamic route generation

“Last mile” scene Transportation hub scenes

Fig. 1. Implementation process of shared bus.

4) Environmentally Friendly: The wide popularity of shared

bus can reduce the emissions of greenhouse gas in cities.

As shown in Fig. 1, the implementation process of shared
bus is analyzing the urban transportation operation market
first to find and select valuable and potential operation scenes,
then analyzing human travel patterns under such scenes and
predicting travel requirements, and allocating buses dynam-
ically to generate flexible routes in the end. In this way,
fragmented trips are integrated into dynamic, nonfixed bus
operational lines based on passenger travel requirements. Keys
to shared bus implementation lie in accurately predicting travel
requirements and planning dynamic routes, which provide the
motivation for this paper.

We focus on how to predict travel requirements and plan
dynamic routes in this paper. As we know, route planning
is a multiobjective optimization problem. Oriented by the
characteristics of the shared bus, we set an operating distance
as the main optimization goal and passengers’ number as a
constraint condition to do route planning. The optimization
goal of traditional bus route planning is usually the number of
passengers. Thus, bus lines are not the shortest routes, which
lead to excessive travel time and a decrease in user experience.
The cost of a taxi can be shared by passengers. However,
for a bus, if there are too few passengers, the operation cost
cannot be covered. On the contrary, too many passengers bring
poor travel experiences and security risks. Therefore, the ideal
number of passengers should close to and not exceed the
number of bus seats. Both being dynamic travel, the technical
requirements of a bus are much higher than a taxi, because a
trip has at least 10 passengers, which makes all aspects of the
application scene difficult [8].

Commuting time has been a headache for most workers,
especially for “last mile” scene. Therefore, we focus on solv-
ing the shared bus route planning problem under “last mile”
scene. To be more especially, the scene is from residential
regions to nearby subway stations. However, the solution for
“last mile” issue is also applicable to other application scenes
where passenger travel requirements change dynamically and
the destination is fixed. In this paper, we propose a two-phased
approach (SubBus) to plan the dynamic routes for shared
subway shuttle bus. To the best of our knowledge, this is
the first route planning work specifically for shared buses.
First, based on a passenger behavior analysis, we identify
the multidimensional properties to predict passenger travel
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requirements, which are the distribution and volume of pas-
sengers at different time intervals. Then, we design a dynamic
programming algorithm to get the optimal routes based on the
prediction results. Our major contributions can be generalized
as follows.

1) We put forward five predictive features, such as flow,
time, week, location, and bus, to predict travel require-
ments of shared buses accurately to overcome the dif-
ficulty caused by the sparseness and high volatility of
crowdsourced shared bus data.

2) We design a dynamic programming algorithm to gener-
ate dynamic, optimal routes with fixed destinations for
multiple operating buses in the “last mile” scene based
on the operating characteristics of shared buses.

3) We integrate the designed dynamic programming algo-
rithm with the five predictive features into a shared bus
dynamic route planning approach (SubBus) to plan flex-
ible routes based on the predicted dynamically changing
travel requirements.

4) We evaluate SubBus with three state-of-the-art predic-
tion models utilizing various metrics and a dynamic
route algorithm based on real shared bus data to demon-
strate the effectiveness and stability of SubBus.

The rest of this paper is structured as follows. In Section II,
we review the related work on traffic flow prediction and traffic
route planning. In Section III, we formulate the route planning
problem of shared buses. In Section IV, we present the details
of SubBus. Data description and experiment result analysis
are displayed in Section V. Finally, we conclude this paper
and chart the future directions in Section VI.

II. RELATED WORK

This section discusses the prior studies closely related to
this paper.

A. Traffic Flow Prediction

Traffic flow prediction has high application value in many
fields, such as smart cities, intelligent transportation ser-
vices, vehicle social networks, and route planning. Traffic
flow prediction models can be roughly divided into the
following four categories: linear prediction model, non-
linear prediction model [9], artificial neural network pre-
diction model [10], and hybrid models combining of the
above-mentioned models [11]. A linear prediction model uti-
lizes the historical data to predict traffic flow based on the peri-
odic change rule of urban traffic travel [12], [13]. The linear
prediction models mainly include a linear regression model,
Kalman filter model, and time series statistical model [14],
such as autoregressive integrated moving average model [15].
Zhang et al. [16] construct a two-step real-time prediction
linear model based on the historical and current patterns to
predict passenger flow in the future. As urban traffic has great
volatility and randomness, the further analysis of this charac-
teristic needs a nonlinear theory, which contains a nonparamet-
ric regression method, analysis based on wavelet theory, and
other methods [17]. With the continuous complication of urban
transportation networks, a traditional linear prediction theory

1509

cannot satisfy people’s requirements for traffic flow predict
accuracy. Artificial neural networks can simulate complex
nonlinear mapping relationships between multiple variates
quite closely, so artificial neural networks are increasingly
widely used in traffic flow prediction. Zhang ef al. [18] put
forward a prediction model based on a deep neural network.
Yang et al. [19] use a deep learning approach, that is, neural
network approach, to optimize the structure of traffic flow
forecasting model. In addition to artificial neural network
traffic flow forecasting models, some scholars focus on a
hybrid predicting model based on a neural network [20], [21].
A deep belief network and a multitask regression method are
combined to form a traffic prediction approach to predict the
traffic flow of multitask output and single-task output [22]. For
traditional traffic data, such as subway transaction card data,
and taxi GPS data, current predictive models have a good
performance on accuracy and stability. However, for shared
bus data, which is involved in this paper, the fluctuation of data
is marked and the data are sparse. Traditional methods cannot
provide the satisfactory prediction effects. Therefore, we pro-
pose a multifeature-based shared bus passenger flow prediction
method according to the analysis of human travel behaviors.

B. Traffic Route Planning

Shared bus route planning falls into the general topic
of urban traffic route planning. For urban travel, how to
choose an optimal route that has less travel time, shorter
distance, more passengers, and other advantages directly
affects the quality of resident lives [23]. Buses and taxis
are the most primary and most important transportation
modes in cities [24], and their route planning issues have
always attracted the continuous interests of numerous schol-
ars [25], [26]. A great number of city’s bus lines constitute
a complex bus network, which leads scholars to optimize
bus lines from graph-based algorithms [27]. Chen ef al. [28]
propose a two-phase approach for bidirectional night-bus route
planning and develop a bidirectional probability based on a
spreading algorithm. Bastani et al. [29] propose an optimal
single flexible route discovery algorithm on graph searching.
Wang et al. [30] present timetable labeling, an efficient index-
ing technique for bus route planning on timetable graphs.
Liu et al. [31] focus on the identification and optimization of
flawed region pairs with problematic bus routing according
to people’s real demands for public transportation. Compared
to fixed bus routes, taxi route planning places a greater
emphasis on dynamics and flexibility [32]. Yuan et al. [33]
propose a time-dependent landmark graph to model the intel-
ligence of taxi drivers and the properties of dynamic road
networks and design a two-stage routing algorithm to compute
the practically fastest route. Li er al [34] present a new
experiential approach that computes optimal paths by mining
floating car trajectories to do fast path finding through a
flexible hierarchical road network. The research on route
planning of public transportation and taxis is relatively mature.
Nevertheless, as far as we know, route planning meth-
ods, specifically for sharing buses, have not yet emerged.
The dynamics of operating routes, the particularity of the
optimization goal, and the constraint of passengers’ number for
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shared bus route planning make a specialized route planning
method quite necessary, which is exactly the focal point of
this paper.

III. PROBLEM FORMULATION

The operating scenes of shared bus mainly include com-
muting scenes, airports, railway stations, and other urban
transportation hub scenes, and destination scenes of the tourist
market. Commuting time has always been a headache for many
office workers, especially the last few kilometers. Therefore,
in this paper, we focus on an important subscene in the
commuting scene: “last mile” issue. More specially, this paper
is from residential areas to nearby subway stations, as shown
in Fig. 2. Thus, the issue that we attempt to deal with is how
residents can quickly and conveniently reach nearby subway
stations from residential areas.

On an abstract level, this paper is a route planning problem
from multiple identified stations to a single destination and
routes change with human travel requirements. Oriented by the
operating characteristics of shared buses, we set an operating
distance as the main optimization goal and passengers’ number
as a constraint condition to do route planning. In other words,
our method is devoted to finding dynamic and flexible routes
with short operating distance, less operating hours, whose
passengers’ number is close to but do not exceed the number
of bus seats. Based on the characteristics of shared bus route
planning, we intend to tackle the formulated route planning
problem from perspectives of travel requirement prediction and
dynamic route planning, and our proposed approach SubBus
is described in detail in Section IV. The approach proposed
for “last mile” issue is also applicable for other scenes with
similar features.

IV. SUBBUS APPROACH

In this section, we first introduce the framework of our
proposed approach SubBus. Then, the detailed description of
the shared bus dynamic route planning approach is presented
from two aspects: travel requirement prediction and dynamic
route planning.

A. Route Planning Framework

Fig. 3 presents the framework of SubBus. It consists of
three major components: 1) data preprocessing; 2) travel
requirement prediction; and 3) dynamic route planning.

1) Data Preprocessing: Typical traffic data preprocessing
operations include data cleaning, data organization, data map-
ping, and data aggregation [35]. For crowdsourced shared bus
order data and GPS data, we first perform the data filtering
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operation to extract useful information from raw data, then
clear out errors and outliers, and zeroize missing values during
the data cleaning phase. Finally, the data are aggregated in the
time dimension. According to the operational law of shared
buses, we divide the study time period into small intervals
of 10 min.

2) Travel Requirement Prediction: The travel requirement
prediction component contains three operations: travel behav-
ior analysis, feature extraction, and requirement prediction.
Before predicting travel requirements, it is necessary to fully
understand travel behaviors. Therefore, based on the pre-
processed data, we first analyze the passenger travel behav-
iors of shared buses and obtain the highly time-dependent,
location-dependent, sparse, and other characteristics of travel
behaviors. Then, based on the above-mentioned characteristics,
we define multiple features that have a significant impact
on travel requirement prediction, including flow, time, week,
location, and bus, and extract them from the data. Based on
the extracted features, an effective machine learning model,
XGBoost, which is an optimized distributed gradient boosting
library, is utilized to predict the travel requirements of shared
buses.

3) Dynamic Route Planning: As we know, the route plan-
ning issue is actually a multiobjective optimization problem.
Therefore, as shown in Fig. 3, the dynamic route planning
component includes possible route generation and optimal
route selection. First of all, we determine the candidate origins
based on station information and passenger travel require-
ments. Then, starting from the candidate origin set, combined
with road network information of the research environment,
a candidate route set is generated. Finally, we design a
dynamic programming method, using predicted results, taking
the operation distance as the optimization goal and the number
of passengers as a constraint condition, to implement the
dynamic route planning of multiple buses operating at the
same time.

B. Travel Requirement Prediction

Travel behaviors of residents actually reflect a kind
of human mobility, which contains a wealth of informa-
tion [36], [37], such as passenger preferences, that is, when
passengers prefer to go out and which stations they would like
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TABLE I
QUANTITATIVE DESCRIPTION OF THE FIVE PREDICTIVE FEATURES

Feature Measure Annotation
1DayBefore Passengers’ number at corresponding time interval of a day before the target day
Flow 2DaysBefore Passengers’ number at corresponding time interval of two days before the target day
3DaysBefore Passengers’ number at corresponding time interval of three days before the target day
Time IntervalLabel The number of time intervals
Week Week In Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, the one the target day belonged to
Location  TimeGap Travel time from the target station to the destination
Bus DaysDifference  Difference in days between the target day and the abrupt day

to take buses at. However, influencing factors of travel behav-
iors are complex and varied, such as mood, economic levels,
weather, and so on [38]. Passenger travel behaviors have a high
degree of time dependence and location dependence. Time
dependence is not only reflected in the multilevel periodicity of
human mobility but also in the complex sequential transition
regularities [39]. In cities, human travel patterns in residential
areas and workspace are significantly different, which is
exactly the typical manifestation of location dependence of
travel behaviors. Travel requirements are hidden in the patterns
and changes in travel behaviors. Thence, for travel requirement
prediction, significance and challenges coexist. Combined with
the characteristics of passenger travel behaviors, we define the
following five features that are critical for travel requirement
prediction of shared buses.

We define the five prediction features: flow, time, week,
location, and bus as follows. Table I presents the quantitative
description of the five predictive features.

1) Flow: As we mentioned earlier, travel behaviors have
complex sequential transitional regularities. Therefore, in pas-
senger flow prediction, the most relevant influencing factor
is historical flow. Traffic flow prediction studies based on
linear models employ historical flow as the only input [15].
In recent studies, prediction models are increasingly complex
and multiple factors are considered, but the historical flow
has always been the most important element that cannot be
ignored [19]. Similarly, in our prediction model, we take the
historical flow as the most crucial feature and quantify it as
passengers’ number at the corresponding time interval on one
day before the target day, two days before the target day, and
three days before the target day. After the data are aggregated
in the time dimension, the value of this feature can be obtained.

2) Time: Travel behaviors are highly time-dependent and
have multilevel periodicity. Daily travel behaviors have a
strong regularity, such as similar peaks and troughs. Under
the increasingly serious traffic conditions, when to go out can
escape traffic jams is the question people must consider before
going out. That is, time is a key factor that affects traffic flow.
We use the number of time intervals as quantification values
of this feature. The specific calculation process is as follows,
where T is the number of time intervals and 6 is the length
of a time interval, and the values of Timejower and Timeypper
can be set according to the special experiments

T = ko, Time < Timejower
Ty = [kO, (k + 1)0], k=kyi, k... ky—1 (1)
T =k, Time > Timeypper.

3) Week: In addition to the peak trough law in a day,
the weekly nature of traffic flow is also obvious. People
go to work or school at a fixed time on weekdays, which
results in fixed morning peaks, noon peaks, and evening peaks.
At weekends, their travel time is relatively scattered and the
peak trough law is relatively weak. Moreover, even equally
being weekdays, the travel rules of Monday and Friday are not
the same, especially on Monday morning and Friday evening.
Therefore, in order to reflect the weekly nature of traffic flow,
we value Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, and Sunday as O, 1, 2, 3, 4, 5, and 6 to form the
weekly property.

4) Location: Everyone who has taken a bus has such
an experience; some stations are overcrowded, while some
stations are almost no one, which is location dependence of
travel behaviors. Station locations can be a good explanation
for this phenomenon. Consequently, for travel requirement
prediction, station’s location information is a property that we
cannot ignore. The number of neighbor stations around the
station, the distance, and travel time between the station and
the nearest station, and the distance and travel time between
the end and the station all can affect the number of passengers
at the station. After thinking over, we choose the time from
the station to the destination as the measure of such location
feature and its value can be obtained from the GPS data. The
travel time from the station to the destination is varied over
time. This property can also reflect the time law from a new
perspective.

5) Bus: For traffic flow prediction based on taxi data or bus
data, the data performance is stable and the fluctuation is small
because of large data volume. In this paper, we use crowd-
sourced shared bus data, which is sparse, and the changes of
buses’ number produce significant fluctuations of passenger
flow. We take the above-mentioned characteristics into con-
sideration in travel requirement prediction and quantify it as
the difference in the days between the target day and the
abrupt day when the number of buses changes. In Section V,
we find that this feature is extremely effective for improving
the prediction accuracy.

Utilizing the five features we defined, we employ the
XGBoost model to travel requirement prediction of shared
buses to lay the foundation for dynamic, flexible route
planning.

C. Dynamic Route Planning

The goal of the second phase of our proposed
approach (SubBus) is to plan dynamic routes for shared
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buses based on predicted travel requirements. In this section,
we describe in detail the dynamic route planning process.
As shown in Fig. 4, the whole dynamic route planning process
consists of the following two steps: 1) select candidate origins
and then select candidate routes and 2) select buses and select
stations based on the candidate origin set and the candidate
route set and finally generate optimal routes if all buses reach
the required frequencies. The idea of generating a candidate
set first and then selecting from it is widely applied in route
planning researches and is verified to be effective [28].

1) Candidate Route Selection: We have already emphasized
that the dynamic route planning problem in this paper is with
a single destination. From the residential area to the nearby
subway station, there are countable multiple stations within
the spatial scope. Therefore, based on the station distribution
topology and given origins, the idea to exhaust all routes
that can reach the destination is practically feasible, but it is
also obvious that not all accessible routes are suitable and an
excessive number of routes increase the difficulty of selecting
optimal routes. From the perspective of the optimization
goal, such as travel distance, we limit the routes to be not
nonbackward and loopfree. Apparently, backward and ringed
routes will plus actual operating distance and damage user
experiences. Therefore, we first extract actual routes from GPS
data and select origins from all stations based on the empirical
values to build a candidate origin set. Then, starting from
candidate origin set, we exhaust all nonbackward, loopfree
accessible routes combining with road network information of
the study area. In this way, the candidate origin set and the
candidate route set are all generated.

Fig. 5 shows an example of candidate route selection. In the
residential area, there are five bus stations and we choose
No. 1 station as the origin. From No. 1 station, multiple routes
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can reach the nearest subway station. We list some of all
accessible routes in Fig. 5. Among them, the route indicated
by the dashed lines produces a backtracking, which increases
the travel distance, so the route does not belong to candidate
routes. Therefore, in this example, the candidate route set from
No. 1 station consists of routes 1-3.

2) Optimal Route Selection: After acquiring the candidate
origin set and the candidate route set, we focus on how to
select optimal routes. Dynamic route planning of shared buses
is a route planning problem with multiple buses operating at
the same time. Compared with the planning issue of a single
optimal route, such a problem is pretty difficult. We need to
consider the operation status of all buses and travel require-
ments of all stations. We cut out a time slot of shared buses
under operating status: among multiple buses and multiple
stations (travel requirements are varied over stations), which
bus should we choose to pick up at which site? Therefore, two
core issues are involved in the dynamic route planning: bus
selection and station selection. Continuous station selection
from the origin to the destination results in a route. An optimal
route means that each station it contains is optimal, which is
exactly in line with the idea of splitting the optimal solution
into multiple optimal substructures in dynamic programming.
Thus, we split the optimal route selection into a continuous
selection of optimal stations, and the interstation and interbus
selections affect each other and will generate the linkage
effect.

a) Bus selection: When multiple buses are all in oper-
ation, how to select a bus? We set a weight for each bus and
prioritize buses to perform the next step based on their weights.
We quantify this weight as the current time of the bus, that is,
the time after picking up passengers at stations. Now, the bus is
in the state of finding the next station. For buses not in routes,
their time is the departure time. The bus with the least weight
has the priority for the next station selection. For example,
compared with the bus at 7:20, the one at 7 o’clock has the
priority. For the whole route planning process, each bus will be
assigned to stations to form routes, so bus selection does not
affect scheduling results. However, the bus selection operation
is essential when multiple buses operate at the same time.
The pseudocode of bus selection is shown in Algorithm 1.

b) Station selection: After selecting buses, we can get the
previous station of a bus. In conjunction with the station and
candidate route set, we can generate an optional set of the next
station for the bus, Stagptimai. Which of these stations should
be selected as the next station? Similarly, we set a weight for
each station. The calculation of this weight is shown in 3.
We first calculate the arrival time of a bus, T, reaching each
station in set Stagptimal. Then, the number p of the time interval
that Ty lies in is also available. Based on the prediction
results, the number of passengers Pass on each station at
the pth time interval is known. Ty is likely to fall within a
time interval. How many passengers should the bus pick up?
Here, we assume that the number of passengers on stations is
evenly distributed over time, i.e., passengers randomly reach
stations within time intervals. The number of passengers that
the bus can pick up is calculated according to the proportion
of time length, as shown in 2. In addition to passengers at
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Algorithm 1 Bus Selection
Input: Rou;: list of routes, which contain the information
of stations, time, and seats;
Rou;.Sta[]: list of stations;
Rou;.T[]: list of current time;
Rou;.Seal]: list of seats;
i: bus ID, (0, 1..n-1)
Output: i: next bus id for selecting stations
1.procedure: select a bus to prioritize station selection
2.if Roug.Sta = ® do

3. i <0

4.  return i;

5.else do

6.  for each route € Rou; do

7. Tprevious[] <= Rou; T[—=11\\ Tpreviousl] is the
list of previous station arriving time;

8. end for

9. Rou.sort(Tprevious)\\ Sort Rou; according to
Tprevious by increasing order;

10. i <0

11.  return i;

12.end else

13.end if

14.end procedure

et A ~ Arrival Time: 7:25 am —— Road network
f Passengers’ Number: 3 ---+ Routel: (1, 2,3)
No.2 Station i Route2: (1, 3, 4)
i ! — . -» Route3: (1, 4)
, PSR
I i
No.3 Station E
> . Time: 7:15 am Arrival Timt’a: 7:22 arrj E .
F ﬂ":‘: Passengers’ Number:1 Passengers’ Number: 5 't ____________ > \/
lo.1 Station | XP 1 —
[ <
e e e e RN D S AT RIS ‘ _____ > 2HEWay Statien
Arrival Time: 7:20 am
F Passengers’ Number: 4
NU:) iorT i i

Fig. 6. Example of station selection.

the pth time interval, there may be passengers who have
not been picked up before the pth time interval. Therefore,
it is necessary to add the number of historical passengers
in 3. Note that during the station selection process, we update
the data of pass dynamically, so z,i:& Passy represents the
number of historical passengers. In this way, we can get
the weight of each station and choose the station with the
highest weight as the next station. After the bus picks up the
passengers, we update the number of passengers in the bus

T. —
rate — -2 start[ 2] )
0
p—1
Passpickup = Z Passy + Pass, * rate. 3)
k=0

Algorithm 2 presents the pseudocode of station selection.
Fig. 6 shows an example of station selection. The bus just
picked up passengers at No. 1 station at 7:15 A.M. Based on
the candidate route set, there are No. 2 station, No. 3 station,
and No. 4 station, and the three stations can be selected.
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For the bus, it takes 10, 7, and 5 min to reach at No. 2 station,
No. 3 station, and No. 4 station, respectively. Assuming that
the length of time intervals is 10 min, only the arrival time of
No. 4 station does not fall in the time interval, and the other
two stations need to consider historical passengers. Assume
that the historical numbers of No. 2 station and No. 3 station
are 1 and 4, respectively, and the number of people in the
current time interval is 4 and 5. The No. 4 station only
considers the current number of passengers, which is 4. The
station with the largest number of passengers is 3, that is,
the bus selects No. 3 station as the next station.

At the same time, we need to limit the number of passengers
in buses due to the seats’ number. When the number of pas-
sengers reaches the number of seats, the bus will directly head
to the destination. In real life, most drivers will choose this
approach to avoid excess passengers. Our method can sense
such path changes and make the corresponding improvements
in the subsequent bus scheduling. In the actual operation, buses
generally have restrictions of frequencies, so in our method,
we also consider this factor. When a bus reaches the required
frequency, it will no longer participate in the schedule. The
value of frequencies is based on empirical values. In general,
the setting of frequencies can satisfy travel requirements and
will not affect scheduling results.

V. EXPERIMENTS

We conduct a case study of SubBus to demonstrate its
effectiveness and efficiency from the perspective of crowd-
sourced shared bus data set. In this section, we first describe
the shared bus data set, including data preprocessing and
data analysis, and then present the experimental results and
effectiveness evaluation of station passenger flow prediction
and route planning.

A. Data Description

The data set used in our experiments is shared subway
shuttle bus data, a kind of representative mobile crowd-
sourced data. It is generated by shared buses in Shanghai by
Panda Bus Company, which covers from April 1, 2017 to
September 6, 2017. The data set includes the order data of
shared buses’ passengers and GPS data of shared buses. Order
data contains various fields, such as order ID, city code, region
code, passenger ID, order type, date and time of order creation
and passengers boarding, station ID of passengers boarding
and alighting, the number of passengers, order status, cash
passengers flag, order cancellation flag, and so on, as shown
in Table II. The GPS data contains latitude, longitude, and
time. The data contain 44 817 passenger records of 8 vehicles
in 10 stations in Shanghai Yongkang City.

1) Data Preprocessing: Data preprocessing contains data
filtering, data cleaning, and data aggregating. We focus on the
route planning from the residential area to the subway station
nearby, so the records in the afternoon from subway stations to
residential areas are filtered. For the operation mode of shared
buses, if passengers use online payment, time and location of
passengers boarding that influence the number of passengers
can be obtained as soon as they get on the bus. However,
if passengers pay in cash, their information will generate
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Fig. 7. Passenger flow of four stations from April 1, 2017 to September 6, 2017. (a) Danguiyuan station. (b) Xiangzhangyuan station. (c¢) Baomingyuan

station. (d) Yongsongyuan station.

DESCRIPTION OF SHARED SUBWAY SHUTTLE BUS ORDER DATA

TABLE I

Field Annotation

OrderID Shared bus order ID

CityCode City code

RegionID Region ID

PassengerID Shared bus passenger ID

Type Orders type

CreateDate Time and data of orders creating
CheckTicketDate  Time and date of passengers boarding
UpStopID Station ID of passengers boarding
DownStopID Station ID of passengers alighting
RideCount the number of passengers
SmallDriverID Shared bus deriver ID
SmallVehicleID Shared bus ID

OverStatus Order status

OrderFlag Order cancellation flag

CashFlag Cash passenger flag

after drivers confirm in the cellphone application Panda Bus.
Therefore, the delay operation of drivers may generate wrong
information. In order to avoid cash passengers’ impact on
passenger flow prediction, we screen out cash passengers
records, whose order type is 3 in data. Then, we clean up
errors and outliers, such as canceled orders and order record
from the subway in the morning, and zeroize missing values.
Finally, we aggregate the data in the time dimension to divide
the study time period into small time intervals of 10 min long
according to the operation law of shared buses.

2) Data Analysis: In order to better understand data char-
acteristics to achieve better experimental results, we carry
on a data analysis on the relevance of passenger flow and
time. There are six operating shared buses in the study area
before June 1 and the number of buses increases to 8§ after
June 1. As shown in Fig. 7, we list the passenger flow of
several stations. It shows that the number of passengers at
the Danguiyuan Station and Baomingyuan Station has a sub-
stantial increase after June 1, while the number of passengers
on the Xiangzhangyuan Station and Yongsongyuan Station
even decreases at the same time. Therefore, in passenger flow
prediction, the factor that the number of shared buses changed
on June 1 cannot be ignored, and we quantify the factor based
on its impact of stations’ passenger flow to generate a feature
to be the model’s input to optimize prediction effects, that is,
the feature Bus.

We can get from Fig. 7 that traffic law of each sta-
tion is different from each other. Considering of this point,

TABLE III
STATISTICAL ANALYSIS OF PASSENGER FLOW DATA

Station ~ Maximum  Minimum  Variance  Standard Deviation
No.1 68 2 216 15

No.2 41 1 117 11

No.3 161 1 2580 51

No.4 32 1 73 9

No.5 35 1 95 10

No.6 16 1 16 4

No.7 36 1 70 8

No.8 43 1 113 11

we build independent models for each station to do passenger
flow prediction. The maximum number of passengers at the
Yongsongyuan Station per day is only 16, and the maximum
number of other stations is only up to 161 or so. Compared
with the other traffic data, such as taxi or subway data set,
the amount of this data set is relatively small [40], [41], which
brings challenges for passenger flow prediction. Another bad
influence of relatively small data amount is that passenger
flow has great fluctuations. We can get from Table III that the
variance of all stations is quite large. For instance, the number
of passengers changes a lot when it rains. Station passenger
flow has poor resistance to emergency, so the changing law of
passenger flow gets more difficult to find. Therefore, in station
passenger flow prediction, we try to optimize the prediction
effects from all aspects and strive to achieve higher accuracy.
The difficulty brought by data demonstrates the effectiveness
of our proposed model further, which will be introduced in
detail in Section V-B.

B. Passenger Flow Prediction Evaluation

In the first step of experiments, we first predict passenger
flow at each station in the targeted area at different intervals.
The order data cover the period from April 1, 2017 to
September 6, 2017, with 158 valid days. Following the process
of our approach (SubBus), we extract four important features
from data based on the analysis of travel behaviors, which
are flow, time, week, and location. According to the data
analysis, we extract another special property: Bus, to simulate
the impact of the increase in the number of buses on passenger
flow at each station. In order to optimize experimental results,
we do the following feature processing.

1) Feature Processing: Based on the specific data type, how
to optimize features and how to maximize the use of features
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Algorithm 2 Station Selection Algorithm 2 (Continued.) Station Selection
Input: 7;: ?iSt of departure time’; 30. Passpickup < z,f:_(} Passi+Passpxrate\\
go’fca"' fj?gdldat? route set; Passpickup is the number of passengers picked
ri: candidate origin set; up:
. . p7
Tim: travel time between two stations; 31 select Station with the max Pass pickup:
Pass: the numbpr of passengers in each time interval at 32. if Sea; + Passpickup[Station] >t do \\ the
- Ie];dzosmluon;l) number of passengers after picking up passen-
i: bus ..n-1);
. 9 9 9 gers
s: station ID, (0, 1...m—.1); 33. add Station to Rou;.Sta;
r:. the number of seats. in a bus; 34. add T,,,[Station] to Rou;.T:
g f;quengy O.f buses; 35. add Passpickup[Station] to Rou;.Sta;
: the destination; 36 upd Pass:
! ) ) ) ) . pdate Pass;
Output: Rou;: list of routes, which contain the information 37. Station < D:
of stations, time, and seats; 38. select Station as the next station;
Roui.Sta[]:. list of stat10n§; 39. end if
Rou;. T[] hst' of current time; 40. end for
Rou;.Seal]: list of seats; . 41. add Station to Rou;.Sta;
1.procedure: select the next station of a bus . 42. add T,,,[Station] to Rou;.T:
2~Sm0p.fi0nal < \\ The set of opqonal next stations and the 43. if Station! = D do \\ D is not the next station
travel time from .the.: previous station to these stations; 44. add Pass pickuplStation] to Rou;.Sea;
3. < 0\\ Initialization, No.0 bus is the first to select 45. update Pass;
stations; 46. end if
4.while i <n do 47. i < Bus Slection Algorithm;
5. if R-ou,-.Sta.count(D) < F do 48.  else do
6. if Rou;.Sta = ® do 49. P <—i+1;
7. for each s € Ori d.o 50. end else
8. Staoprionat[s].time < 0; 51. end if
9. end for 52. end while
11. else if Rou,-.Sta[—l'] =D do 53.return Rou;:
12. for each s € Ori d.o 54.end procedure
13. Staoptional[s].time <= T[D][s];
14. end for . T
15 else do a) Normalization: Feature normalization is the proposed
16, Staprevions < Roui.Sta[—1]\\ get previous solution for the great disparity in features’ value range that
stations: affects the outcome of our model adversely. Normalization
17. Sta\\get all possible next stations according needs to calculate the mean and sta.lndard d§v1at10n of the
{0 RO - feature value, as shown in the following equation:
cans
18. for each s € Sta do , X—X
19. Staoptional[5]~time <~ T[Staprevious][s]; r = S )
20. end for . _
1 end else where x is the value of raw features, x stands for the mean,
22' end if S is the standard deviation, and x’ is the value of processed
' ) features. In this way, the value of all the features is processed
23. for each s € Stagprionar do h )
24, Ture < Roui. Ty[— 1]+ Stagprionails].time\\ ~ '© € Same value range. ,
the time arriving at station s; b) Discrete features processing: Features are not always
25 if s =D do ’ continuous values, and may be classified values, that is discrete
26. select D as the next station: values, just as the features week and time in this paper. Even
28' end if ’ converted into digital representation, the data are also not
29. rate < %m,[p]\\ p is the number of suitable for using directly in our model, which defaults that

time interval that T,,, lies in, and Ty;q, 1S the
beginning of pth interval;

determine effects of algorithms. Therefore, according to the
characteristics of data and problem, we perform the following
processing steps to maximize the extraction of features from
raw data for the use of algorithms and models to achieve the
best prediction effects.

data are continuous and ordered. In order to solve this problem,
one of the possible solutions is to use one-hot encoding, also
known as one-bit valid encoding. Its method is to use N-bit
status register to encode N states, and each state has a separate
register bit and only one of them is valid at any time. It can be
understood that for each feature, if it has m possible values,
it becomes m binary features after one-hot encoding. What
is more, these features are mutually exclusive and only one
is active for each time. As a result, the data become sparse.
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There are two main benefits of one-hot encoding: first, it solves
the problem that our model is not suitable for processing
discrete data, and second, it plays a role in the expansion of
features to a certain degree.

c) Polynomial feature construction: As we mentioned
earlier, one-hot encoding can play a role in expanding features.
The purpose of polynomial feature construction is exactly to
expand features. We use a basic function to construct linear fit
in the higher dimension space of features. Thus, the model has
the flexibility to adapt to a wider range of data. Common data
transformations are polynomial-based, exponential function-
based, and logarithmic function-based. This operation not
only increases the number of features but also constructs
the features that we may ignore in the feature extraction
process. Polynomial features consider the nonlinear features
of the input data to increase the model’s complexity and
capture the high-order and interacting terms of features. Here,
we use the polynomial-based data transformation, which is
named polynomial feature construction. We use a polynomial
conversion formula of degree 3.

2) Parameter Tuning: As mentioned earlier in the part of
data analysis, instability and too small values of fields bring
great difficulties to the prediction, which does not exist in
traditional traffic data prediction, such as subway data and
taxi data. Therefore, we try to improve prediction effects
from various aspects, including data analysis, feature selection,
feature processing, and so on. Hyperparameter tuning is a
way to improve the effects of models. We mainly adjusted
the following parameters. The maximum depth of the tree,
represented by max_depth, is used to control overfitting and
its usual range is 3—10. min_child_weight is used to control
overlearning, and a higher value prevents the learning rela-
tionship of the model. y determines the minimum required
loss reduction and its default is 0. subsample controls the
proportion of randomly sampled for each tree. reg_alpha = 1
applies regularization to reduce the fit.

The similarity of passenger flow patterns at each station is
low, so we build a prediction model for each station. Then,
the parameter tuning operation is performed separately. Taking
the Danguiyuan Station for example, based on the results of
default parameters, we first adjust the values of max_depth and
min_child_weight and finally update the max_depth value to
10. Followed by y and subsmaple, their default values are
maintained to be the best. Finally, we tune the regularization
parameters. The parameters tuning process of other stations is
basically the same, and there are differences in concrete values
of parameters.

3) Prediction Results: The prediction results demonstrate
the effectiveness of our method. Meanwhile, we use other
three models to carry out contrast experiments, which are
support vector machine regression (SVR) model, gradient
boosting regression model (GDBR), and multiple linear regres-
sion (MLR) model. Fig. 8 shows the passenger flow change
over time intervals based on real data and predicting data of
four models on September 4 and 5. We can get from Fig. 8
that there are two flow peaks at 7:30 and 8:00 around in real
data. For predicting data, in addition to our approach, SVR and
GDBR have also predicted this trend. However, the difference
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Fig. 8. Prediction results of four models on two typical days.
(a) September 4, 2017. (b) September 5, 2017.

between the predict data and the real data is large. There is
a small gap between the real data and the predicted values of
our approach. The prediction effect of MLR is quite bad in our
experiment, although it shows good results in the passenger
flow prediction based on subway data. On the whole, our
approach can provide good predictive results.

4) Prediction Evaluation: However, from passenger flow-
chart of September 5 [Fig. 10(d)], we found that the predictive
effects of GDBR and SVR seem pretty good. The prediction
data of one day are contingent clearly, and then, how is the
prediction effect of our method on the earth? In order to solve
this problem, we use several evaluation indicators: correlation
coefficient (CC), root mean square error (RMSE), and mean
absolute error (MAE) to further measure the overall predictive
effect of multiple methods.

1) CC: According to different research objects, CC has a
variety of definitions, and the one used most commonly
is Pearson CC, which is used in this paper. CC can reflect
the degree of correlation between variables. We define
CC in this paper as the following equation:

Cov(pi, yi)
Var|[ p; | Var[y; ]

where p; and y; denote the predicted values and real
ones, respectively. Cov(p;, y;) is the covariance of p;
and y;, Var[p;] is the variance of x, and Var[y;] is the
variance of Y. In traffic flow prediction, CC is often used
to analyze the linear correlation between the predicted
data and the real data, as an important reference for
accuracy.

2) RMSE: 1t is used to verify the deviation between pre-
dicted values and real values, which shows the model
accuracy from a perspective of predicting deviation.
In this paper, the RMSE is given by

RMSE — > lpi— Yi|2.
n

CC= (%)

(6)

3) MAE: 1t is the average of the absolute values of the
deviation between all the individual predicted values and
real values. The MAE can reflect the actual situation of
predict error well

1 n
MAE=;2|pf—yf|. )
=
We selected index data of all models at five stations to display
in Fig. 9. For CC, our approach is superior to other models

at most stations. At station Sth, the predictive effect of MLR
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is better than our approach, while it shows very poor effect at
other stations. The predict accuracy of our approach at some
stations can even reach 0.8. The smaller the value of RMSE
and MAE, the better the model in performance. From the
point of view of RMSE and MAE, the shortcomings of MLR
instability are more pronounced. Our approach is basically
kept at a minimum in multiple stations. Under good predict
accuracy, our approach can maintain the stability of prediction.

5) Importance of Features: After obtaining the prediction
results of travel requirements, we analyze the importance of
features. We choose the importance of features of several
station prediction models shown in Fig. 10, where the values
of the ordinate only represent the importance of features.
The higher the value, the more important the feature is, and
the value has no practical significance. The discrepancy in
importance between features varies over models, but for all
models, DifferentDays is the most important, indicating that
this feature owns a strong ability to improve the feature
accuracy. The number of vehicles is significant for shared
bus travel requirement prediction. IntervallLabel is also an
important feature, which shows the strong time dependence
of travel requirements.

C. Dynamic Route Planning Evaluation

In the dynamic route planning phase, we first do candidate
route selection and the candidate routes of No. 1 station
are shown in Fig. 11. Then, utilizing accurate prediction
results of travel requirements, we plan dynamic routes for
subway shuttle shared buses. The buses scheduling results
from 06:55 A.M. to 07:05 A.M. are presented in Fig. 12,
and we can see that the routes change over time because
the travel requirements are different at different time intervals.

Importance of each models’ features. (a) Danguiyuan station. (b) Xiangzhangyuan station. (c) Pujianglu station. (d) Shenghuayuan station.
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Fig. 11. Candidate route set of No. 1 station.

Because passenger flow is relatively concentrated at No. | sta-
tion from 6:50 A.M. to 7:20 A.M., there are more vehicles
departing from No. 1 station. Table IV shows the examples
of route planning results. We can get the operating routes of
some vehicles and time at which vehicles arriving at each
station of the route. Moreover, for the same shared bus, its
operating routes at different times are likely to be different,
which means the dynamic route. Our algorithm chooses the
optimal routes for the shared bus based on the change of
passenger flow at each station. Compared with traditional
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TABLE IV
ROUTE PLANNING RESULTS OF COMPARATIVE EXPERIMENTS

Busld  Frequency  Route Time
4 1 [8,7,4,3,2,5,6,9] [07:27:57, °07:29:38°, *07:32:11", *07:33:20°, °07:34:04’, *07:35:59’, 07:36:13’, *07:49:35’]
1 1 [8,7,4,5,6,9] [’07:03:00°, *07:05:30°, *07:08:04°, *07:10:28, *07:10:37°, *07:19:46’]
1 2 [6,5,2,3,4,9] [’07:28:39’, °07:28:49°, *07:30:32’, *07:31:12°, ’07:31:35°, *07:46:45]
1 3 [8,7,4,3,2,5,6,9] [07:57:48, °07:59:28’, *08:01:52’, *08:02:41°, 08:03:10°, *08:04:52", 08:05:09’, *08:27:36’]
6 4 [1, 4, 9] [708:18:22’, "08:19:36°, *08:23:49°, *08:24:28’, ’08:25:15°, *08:26:55°, 08:27:08°, *08:42:59’]
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ublic transport route planning, the rough use of the idea is 3
public transport route pl g, th gh f the id ®
that the largest loop connects the largest number of passengers, 8 2000
and there exist some very short routes in our planning results,
because such routes contain stations with a relatively large 1000
number of passengers and there is no need to spend extra 0
time from the farthest station. We also analyze the results of Average Minimum Maximum Mode
our route planning from the perspective of operation distance
Fig. 14. Distance statistics of operating routes.

and passengers’ number.

From the aspect of passengers’ number, the superiority of
our approach is presented. In Fig. 13, we select operation pas-
sengers’ number data of our optimal routes and real operating
routes from August 28 to September 3, which exactly covers
a week. It can be seen that for most days in the week, the
passengers’ number of our optimal routes is larger than the
real routes. We calculate the operation distance of all planning
routes and real operation routes in a day and display its average
value, minimum, maximum, and mode in Fig. 14. We can see
from the figure that the average distance, minimum distance,
and mode distance of our planning routes are all obviously
shorter than the real routes. Therefore, based on our planning
results, shared buses can lower costs and improve operational
efficiency by reducing operating distances.

In addition to real operation routes, our method is also supe-
rior to other dynamic route planning methods. Here, we choose
a prediction-based unobstructed route planning method [42],

which has the similar framework: planning dynamic routes
based on prediction. In their work, crowded stations are first
detected and unobstructed routes can be found. However, such
an effective method is not suitable for dealing with route
planning problem of shared buses. We display the part route
planning results of the comparative method in Table V. From
each origin, there is only a single route, and among all eight
stations, all routes only cover four stations. What is worse,
routes are fixed.

In our approach, we will consider the characteristics of the
shared bus route planning and provide a high capacity, short
operating distance, and dynamic route planning methods.

In a word, our proposed approach (SubBus) can provide
effective suggestions for shared bus dynamic route plan-
ning, especially from the aspects of operating distance and
passengers’ number.
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TABLE V
ROUTE PLANNING RESULTS OF COMPARATIVE EXPERIMENTS

Busld  Frequency  Route Time

1 1 [1,5,6,9] [06:55:26°, °06:59:48’, *07:00:06°, *07:02:00’]
4 1 [1,5,6,9] [07:03:00°, *07:07:22°, *07:07:40’, *07:09:34’]
7 1 [1,5,6,9] [07:12:07°, °07:16:29°, *07:16:39°, *07:20:21"]
1 2 [8,5,6,9] [07:12:41°, °07:15:02°, *07:15:20°, *07:19:11°]
2 2 [8,5,6,9] [07:15:11°,°07:18:44°, °07:18:54°, *07:20:48’]
6 2 [8,5,6,9] [07:26:30°, *07:30:03°, *07:30:19°, *07:30:19’]
7 2 [6,5, 8, 9] [’07:26:07°, °07:26:22°, *07:29:55°, *07:31:25]
4 3 [6,5, 8, 9] [’07:32:24°, °07:32:38’, *07:36:15’, *07:37:59’]
6 2 [6,5, 8, 9] [’07:38:31”, *07:38:45’, *07:42:22’, *07:44:06’]

VI. CONCLUSION

In this paper, we put forward a dynamic route planning
approach named SubBus for shared subway shuttle buses
based on crowdsourced mobile data, which contains station
passenger flow prediction and dynamic route planning. Based
on the real shared subway shuttle bus data, we carry out
extensive experiments to demonstrate that our approach can
generate effective operation routes to optimize the operation
status of shared buses to promote their development.
We perform a resident travel behavior analysis to extract
multiple important features and to predict passenger flow
utilizing a machine learning method. Though the data are
very volatile, the predict accuracy at several stations can reach
80%. Based on the candidate origin set and candidate route
set we generated, we obtain the optimal routes for shared
buses by our designed dynamic programming algorithm.
Experiment results show that our planning routes have shorter
operation distance and more passengers than real routes. Our
proposed approach (SubBus) can generate routes for shared
subway shuttle buses to optimize operation status on the “last
mile” issue.

REFERENCES

[1] J. Hamari, M. Sjoklint, and A. Ukkonen, “The sharing economy: Why
people participate in collaborative consumption,” J. Assoc. Inf. Sci.
Technol., vol. 67, no. 9, pp. 2047-2059, 2016.

[2] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson, and
A. Oliveira, “Smart cities and the future Internet: Towards cooperation
frameworks for open innovation,” in The Future Internet. Berlin, Ger-
many: Springer, 2011, pp. 431-446.

[3] X. Kong et al., “Mobility dataset generation for vehicular social net-
works based on floating car data,” IEEE Trans. Veh. Technol., vol. 67,
no. 5, pp. 3874-3886, May 2018.

[4] B. Cohen and J. Kietzmann, “Ride on! mobility business models for the
sharing economy,” Org. Environ., vol. 27, no. 3, pp. 279-296, 2014.

[5] J. Wirtz and C. Tang, “Uber: Competing as market leader in the U.S.
versus being a distant second in China,” in Services Marketing: People,
Technology, Strategy, 8th ed. Hackensack, NJ, USA: World Scientific,
2016, pp. 626-632.

[6] L. Hong, Y. Yan, M. Ouyang, H. Tian, and X. He, “Vulnerability effects
of passengers’ intermodal transfer distance preference and subway
expansion on complementary urban public transportation systems,” Rel.
Eng. Syst. Saf., vol. 158, pp. 58-72, Feb. 2017.

[71 X. Kong, X. Song, F. Xia, H. Guo, J. Wang, and A. Tolba, “LoTAD:
Long-term traffic anomaly detection based on crowdsourced bus trajec-
tory data,” World Wide Web, vol. 21, no. 3, pp. 825-847, 2018.

[8] D. Wang, W. Cao, J. Li, and J. Ye, “DeepSD: Supply-demand pre-
diction for online car-hailing services using deep neural networks,” in
Proc. IEEE 33rd Int. Conf. Data Eng. (ICDE), San Diego, CA, USA,
Apr. 2017, pp. 243-254.

[9] H. Tan, Y. Wu, B. Shen, P. J. Jin, and B. Ran, “Short-term traffic
prediction based on dynamic tensor completion,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 8, pp. 2123-2133, Aug. 2016.

[10] Y.Ly, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 2, pp. 865-873, Apr. 2015.

[11] D. Chen, “Research on traffic flow prediction in the big data environment
based on the improved RBF neural network,” IEEE Trans. Ind. Informat.,
vol. 13, no. 4, pp. 20002008, Aug. 2017.

[12] J. Zhao and S. Sun, “High-order Gaussian process dynamical models
for traffic flow prediction,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 7, pp. 2014-2019, Jul. 2016.

[13] J. Chen, K. H. Low, Y. Yao, and P. Jaillet, “Gaussian process decentral-
ized data fusion and active sensing for spatiotemporal traffic modeling
and prediction in mobility-on-demand systems,” IEEE Trans. Autom.
Sci. Eng., vol. 12, no. 3, pp. 901-921, Jul. 2015.

[14] X. Kong, F. Xia, J. Wang, A. Rahim, and S. K. Das, “Time-location-
relationship combined service recommendation based on taxi trajectory
data,” IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1202-1212,
Jun. 2017.

[15] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Predicting taxi—passenger demand using streaming data,”
IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1393-1402,
Sep. 2013.

[16] J. Zhang et al., “A real-time passenger flow estimation and prediction
method for urban bus transit systems,” IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 11, pp. 3168-3178, Nov. 2017.

[17] A. Cheng, X. Jiang, Y. Li, C. Zhang, and H. Zhu, “Multiple sources and
multiple measures based traffic flow prediction using the chaos theory
and support vector regression method,” Phys. A, Statist. Mech. Appl.,
vol. 466, pp. 422434, Jan. 2017.

[18] J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi, “DNN-based prediction
model for spatio-temporal data,” in Proc. 24th ACM SIGSPATIAL Int.
Conf. Adv. Geograph. Inf. Syst., Burlingame, CA, USA, Oct. 2016,
Art. no. 92.

[19] H.-F. Yang, T. S. Dillon, and Y.-P. P. Chen, “Optimized structure of the
traffic flow forecasting model with a deep learning approach,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2371-2381,
Oct. 2017.

[20] Q. Shang, C. Lin, Z. Yang, Q. Bing, and X. Zhou, “A hybrid short-
term traffic flow prediction model based on singular spectrum analysis
and kernel extreme learning machine,” PLoS ONE, vol. 11, no. 8,
p. e0161259, 2016.

[21] N. G. Polson and V. O. Sokolov, “Deep learning for short-term traffic
flow prediction,” Transp. Res. C, Emerg. Technol., vol. 79, pp. 1-17,
Jun. 2017.

[22] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for traffic
flow prediction: Deep belief networks with multitask learning,” /EEE
Trans. Intell. Transp. Syst., vol. 15, no. 5, pp. 2191-2201, Oct. 2014.

[23] Z. Ning, F. Xia, N. Ullah, X. J. Kong, and X. P. Hu, “Vehicular social
networks: Enabling smart mobility,” IEEE Commun. Mag., vol. 55, no. 5,
pp. 16-55, May 2017.

[24] A.-N. Qazi, Y. Nara, K. Okubo, and H. Kubota, “Demand variations
and evacuation route flexibility in short-notice bus-based evacuation
planning,” IATSS Res., vol. 41, no. 4, pp. 147-152, 2017.

[25] W.Y. Szeto and Y. Wu, “A simultaneous bus route design and frequency
setting problem for Tin Shui Wai, Hong Kong,” Eur. J. Oper. Res.,
vol. 209, no. 2, pp. 141-155, 2011.

[26] K. Supangat and Y. E. Soelistio, “Bus stops location and bus route
planning using mean shift clustering and ant colony in West Jakarta,”
IOP Conf. Ser., Mater. Sci. Eng., vol. 185, no. 1, p. 012022, 2017.



1520

[27] N. Mathew, S. L. Smith, and S. L. Waslander, “Planning paths for
package delivery in heterogeneous multirobot teams,” IEEE Trans.
Autom. Sci. Eng., vol. 12, no. 4, pp. 1298-1308, Oct. 2015.

C. Chen, D. Zhang, N. Li, and Z.-H. Zhou, “B-Planner: Planning
bidirectional night bus routes using large-scale taxi GPS traces,” IEEE
Trans. Intell. Transp. Syst., vol. 15, no. 4, pp. 1451-1465, Aug. 2014.
F. Bastani, Y. Huang, X. Xie, and J. W. Powell, “A greener transportation
mode: Flexible routes discovery from GPS trajectory data,” in Proc.
19th ACM SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst., Chicago,
IL, USA, Nov. 2011, pp. 405-408.

S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou, “Efficient route
planning on public transportation networks: A labelling approach,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, Melbourne, VIC,
Australia, May 2015, pp. 967-982.

Y. Liu et al., “Intelligent bus routing with heterogeneous human mobility
patterns,” Knowl. Inf. Syst., vol. 50, no. 2, pp. 383-415, 2017.

Q. Yang, Z. Gao, X. Kong, A. Rahim, J. Wang, and F. Xia, “Taxi
operation optimization based on big traffic data,” in Proc. IEEE 12th
Int. Conf. Ubiquitous Intell. Comput., Beijing, China, Aug. 2015,
pp. 127-134.

J. Yuan, Y. Zheng, X. Xie, and G. Sun, “T-drive: Enhancing driving
directions with taxi drivers’ intelligence,” IEEE Trans. Knowl. Data
Eng., vol. 25, no. 1, pp. 220-232, Jan. 2013.

Q. Li, Z. Zeng, T. Zhang, J. Li, and Z. Wu, “Path-finding through
flexible hierarchical road networks: An experiential approach using taxi
trajectory data,” Int. J. Appl. Earth Observ. Geoinf., vol. 13, no. 1,
pp. 110-119, 2011.

W. Chen, F. Guo, and F. Y. Wang, “A survey of traffic data visualization,”
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 2970-2984,
Jun. 2015.

S. Chen et al., “Interactive visual discovering of movement patterns
from sparsely sampled geo-tagged social media data,” IEEE Trans. Vis.
Comput. Graphics, vol. 22, no. 1, pp. 270-279, Jan. 2016.

W. Wu et al., “TelCoVis: Visual exploration of co-occurrence in
urban human mobility based on telco data,” IEEE Trans. Vis. Comput.
Graphics, vol. 22, no. 1, pp. 935-944, Jan. 2016.

K. Zhao, M. Musolesi, P. Hui, W. Rao, and S. Tarkoma, “Explaining
the power-law distribution of human mobility through transportation
modality decomposition,” Sci. Rep., vol. 5, Mar. 2015, Art. no. 9136.
J. Feng et al., “DeepMove: Predicting human mobility with attentional
recurrent networks,” in Proc. World Wide Web Conf., Lyon, France,
Apr. 2018, pp. 1459-1468.

X. Kong, Z. Xu, G. Shen, J. Wang, Q. Yang, and B. Zhang, “Urban traffic
congestion estimation and prediction based on floating car trajectory
data,” Future Generat. Comput. Syst., vol. 61, pp. 97-107, Aug. 2016.
X. Zheng et al., “Big data for social transportation,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 3, pp. 620-630, Mar. 2015.

S. Shuo, G. Danhuai, L. Jiajun, and W. Ji-Rong, “Prediction-based
unobstructed route planning,” Neurocomputing, vol. 213, pp. 147-154,
Nov. 2016.

(28]

[29]
[30]

(31]

(32]

[33]

[34]

[35]
[36]
[37]
(38]
[39]
[40]

[41]

[42]

Xiangjie Kong (M’13-SM’17) received the B.Sc.
and Ph.D. degrees from Zhejiang University,
Hangzhou, China.

He is currently an Associate Professor with the
School of Software, Dalian University of Technol-
ogy, Dalian, China. He has published over 70 scien-
tific papers in international journals and conferences
(with over 50 indexed by ISI SCIE). His research
interests include intelligent transportation systems,
mobile computing, and cyber-physical systems.

i Dr. Kong is a Senior Member of CCF and a
member of ACM. He has served as the workshop chair or a PC member
for a number of conferences. He has served as a (Guest) Editor for several
international journals.

Menglin Li received the Bachelor’s degree in soft-
ware engineering from the Dalian University of
Technology, Dalian, China, in 2016, where she is
currently pursuing the Master’s degree with the
Alpha Lab, School of Software.

Her research interests include big traffic data min-
ing and analysis, human mobility behavior analysis,
and smart city development.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 15, NO. 4, OCTOBER 2018

Tao Tang is currently pursuing the Bachelor’s
degree in computer science and technology with
Chengdu College, University of Electronic Science
and Technology of China, Chengdu, China.

His research interests include big data analytics
and visualization.

Kaiqi Tian is currently pursuing the Bachelor’s
degree in software engineering with the Dalian Uni-
versity of Technology, Dalian, China.

His research interests include big traffic data min-
ing and analysis, human mobility behavior analysis,
and smart city development.

Luis Moreira-Matias (M’15) received the M.Sc.
degree in informatics engineering and the Ph.D.
degree in computer science (major in machine
learning) from the University of Porto, Porto,
Portugal, in 2009 and 2015, respectively.

He is currently a Senior Researcher with NEC
Laboratories Europe, Heidelberg, Germany, where
he leads R&D of Al-based software for Transport,
Retail, and Fintech industries. He has authored
over 40 high-impact peer-reviewed publications on
related topics. His interests include machine learn-
ing, data mining, and predictive analytics in general.

Dr. Moreira-Matias won an International Data Mining competition held
during a Research Summer School at the Technical University of Dortmund
in 2012. He served in the Program Committee and/or as an invited reviewer
for multiple high-impact research venues, such as KDD, AAAI, IEEE TKDE,
ESWA, ECML/PKDD, and KAIS, among others. He was invited to give
keynotes around the globe, ranging locations from Brisbane (Australia) to
Las Palmas (Spain). He encloses a successful track record of real-world
deployment of Al-based software products across EMEA and APAC.

Feng Xia (M’07-SM’12) received the B.Sc. and
Ph.D. degrees from Zhejiang University, Hangzhou,
China.

He was a Research Fellow with the Queensland
University of Technology, Brisbane, QLD, Australia.
He is currently a Full Professor with the School of
Software, Dalian University of Technology, Dalian,
China. He has published two books and over 200 sci-
entific papers in international journals and confer-
ences. His research interests include computational
social science, network science, data science, and
mobile social networks.

Dr. Xia is a Senior Member of ACM and a Member of AAAS. He serves as
the General Chair, the PC Chair, the Workshop Chair, or the Publicity Chair
for a number of conferences. He is a (Guest) Editor of several international
journals.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


